Models, code, and papers for "Fatemeh Shiri":

Face Destylization

Feb 05, 2018
Fatemeh Shiri, Xin Yu, Fatih Porikli, Piotr Koniusz

Numerous style transfer methods which produce artistic styles of portraits have been proposed to date. However, the inverse problem of converting the stylized portraits back into realistic faces is yet to be investigated thoroughly. Reverting an artistic portrait to its original photo-realistic face image has potential to facilitate human perception and identity analysis. In this paper, we propose a novel Face Destylization Neural Network (FDNN) to restore the latent photo-realistic faces from the stylized ones. We develop a Style Removal Network composed of convolutional, fully-connected and deconvolutional layers. The convolutional layers are designed to extract facial components from stylized face images. Consecutively, the fully-connected layer transfers the extracted feature maps of stylized images into the corresponding feature maps of real faces and the deconvolutional layers generate real faces from the transferred feature maps. To enforce the destylized faces to be similar to authentic face images, we employ a discriminative network, which consists of convolutional and fully connected layers. We demonstrate the effectiveness of our network by conducting experiments on an extensive set of synthetic images. Furthermore, we illustrate our network can recover faces from stylized portraits and real paintings for which the stylized data was unavailable during the training phase.


  Click for Model/Code and Paper
Recovering Faces from Portraits with Auxiliary Facial Attributes

Apr 07, 2019
Fatemeh Shiri, Xin Yu, Fatih Porikli, Richard Hartley, Piotr Koniusz

Recovering a photorealistic face from an artistic portrait is a challenging task since crucial facial details are often distorted or completely lost in artistic compositions. To handle this loss, we propose an Attribute-guided Face Recovery from Portraits (AFRP) that utilizes a Face Recovery Network (FRN) and a Discriminative Network (DN). FRN consists of an autoencoder with residual block-embedded skip-connections and incorporates facial attribute vectors into the feature maps of input portraits at the bottleneck of the autoencoder. DN has multiple convolutional and fully-connected layers, and its role is to enforce FRN to generate authentic face images with corresponding facial attributes dictated by the input attribute vectors. %Leveraging on the spatial transformer networks, FRN automatically compensates for misalignments of portraits. % and generates aligned face images. For the preservation of identities, we impose the recovered and ground-truth faces to share similar visual features. Specifically, DN determines whether the recovered image looks like a real face and checks if the facial attributes extracted from the recovered image are consistent with given attributes. %Our method can recover high-quality photorealistic faces from unaligned portraits while preserving the identity of the face images as well as it can reconstruct a photorealistic face image with a desired set of attributes. Our method can recover photorealistic identity-preserving faces with desired attributes from unseen stylized portraits, artistic paintings, and hand-drawn sketches. On large-scale synthesized and sketch datasets, we demonstrate that our face recovery method achieves state-of-the-art results.

* 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) 

  Click for Model/Code and Paper
Identity-preserving Face Recovery from Stylized Portraits

Apr 07, 2019
Fatemeh Shiri, Xin Yu, Fatih Porikli, Richard Hartley, Piotr Koniusz

Given an artistic portrait, recovering the latent photorealistic face that preserves the subject's identity is challenging because the facial details are often distorted or fully lost in artistic portraits. We develop an Identity-preserving Face Recovery from Portraits (IFRP) method that utilizes a Style Removal network (SRN) and a Discriminative Network (DN). Our SRN, composed of an autoencoder with residual block-embedded skip connections, is designed to transfer feature maps of stylized images to the feature maps of the corresponding photorealistic faces. Owing to the Spatial Transformer Network (STN), SRN automatically compensates for misalignments of stylized portraits to output aligned realistic face images. To ensure the identity preservation, we promote the recovered and ground truth faces to share similar visual features via a distance measure which compares features of recovered and ground truth faces extracted from a pre-trained FaceNet network. DN has multiple convolutional and fully-connected layers, and its role is to enforce recovered faces to be similar to authentic faces. Thus, we can recover high-quality photorealistic faces from unaligned portraits while preserving the identity of the face in an image. By conducting extensive evaluations on a large-scale synthesized dataset and a hand-drawn sketch dataset, we demonstrate that our method achieves superior face recovery and attains state-of-the-art results. In addition, our method can recover photorealistic faces from unseen stylized portraits, artistic paintings, and hand-drawn sketches.

* International Journal of Computer Vision 2019. arXiv admin note: substantial text overlap with arXiv:1801.02279 

  Click for Model/Code and Paper
Identity-preserving Face Recovery from Portraits

Feb 05, 2018
Fatemeh Shiri, Xin Yu, Fatih Porikli, Richard Hartley, Piotr Koniusz

Recovering the latent photorealistic faces from their artistic portraits aids human perception and facial analysis. However, a recovery process that can preserve identity is challenging because the fine details of real faces can be distorted or lost in stylized images. In this paper, we present a new Identity-preserving Face Recovery from Portraits (IFRP) to recover latent photorealistic faces from unaligned stylized portraits. Our IFRP method consists of two components: Style Removal Network (SRN) and Discriminative Network (DN). The SRN is designed to transfer feature maps of stylized images to the feature maps of the corresponding photorealistic faces. By embedding spatial transformer networks into the SRN, our method can compensate for misalignments of stylized faces automatically and output aligned realistic face images. The role of the DN is to enforce recovered faces to be similar to authentic faces. To ensure the identity preservation, we promote the recovered and ground-truth faces to share similar visual features via a distance measure which compares features of recovered and ground-truth faces extracted from a pre-trained VGG network. We evaluate our method on a large-scale synthesized dataset of real and stylized face pairs and attain state of the art results. In addition, our method can recover photorealistic faces from previously unseen stylized portraits, original paintings and human-drawn sketches.


  Click for Model/Code and Paper