Research papers and code for "Feixiang Lu":
In this paper, we make the first attempt to build a framework to simultaneously estimate semantic parts, shape, translation, and orientation of cars from single street view. Our framework contains three major contributions. Firstly, a novel domain adaptation approach based on the class consistency loss is developed to transfer our part segmentation model from the synthesized images to the real images. Secondly, we propose a novel network structure that leverages part-level features from street views and 3D losses for pose and shape estimation. Thirdly, we construct a high quality dataset that contains more than 300 different car models with physical dimensions and part-level annotations based on global and local deformations. We have conducted experiments on both synthesized data and real images. Our results show that the domain adaptation approach can bring 35.5 percentage point performance improvement in terms of mean intersection-over-union score (mIoU) comparing with the baseline network using domain randomization only. Our network for translation and orientation estimation achieves competitive performance on highly complex street views (e.g., 11 cars per image on average). Moreover, our network is able to reconstruct a list of 3D car models with part-level details from street views, which could benefit various applications such as fine-grained car recognition, vehicle re-identification, and traffic simulation.

* 10 pages, 9 figures
Click to Read Paper and Get Code
Current researches of action recognition mainly focus on single-view and multi-view recognition, which can hardly satisfies the requirements of human-robot interaction (HRI) applications to recognize actions from arbitrary views. The lack of datasets also sets up barriers. To provide data for arbitrary-view action recognition, we newly collect a large-scale RGB-D action dataset for arbitrary-view action analysis, including RGB videos, depth and skeleton sequences. The dataset includes action samples captured in 8 fixed viewpoints and varying-view sequences which covers the entire 360 degree view angles. In total, 118 persons are invited to act 40 action categories, and 25,600 video samples are collected. Our dataset involves more participants, more viewpoints and a large number of samples. More importantly, it is the first dataset containing the entire 360 degree varying-view sequences. The dataset provides sufficient data for multi-view, cross-view and arbitrary-view action analysis. Besides, we propose a View-guided Skeleton CNN (VS-CNN) to tackle the problem of arbitrary-view action recognition. Experiment results show that the VS-CNN achieves superior performance.

* Origianl version has been published by ACMMM 2018
Click to Read Paper and Get Code