Convolutional Neural Networks (CNNs) are commonly thought to recognise objects by learning increasingly complex representations of object shapes. Some recent studies hint to a more important role of image textures. We here put these conflicting hypotheses to a quantitative test by evaluating CNNs and human observers on images with a texture-shape cue conflict. We show that ImageNet-trained CNNs are strongly biased towards recognising textures rather than shapes, which is in stark contrast to human behavioural evidence and reveals fundamentally different classification strategies. We then demonstrate that the same standard architecture (ResNet-50) that learns a texture-based representation on ImageNet is able to learn a shape-based representation instead when trained on "Stylized-ImageNet", a stylized version of ImageNet. This provides a much better fit for human behavioural performance in our well-controlled psychophysical lab setting (nine experiments totalling 48,560 psychophysical trials across 97 observers) and comes with a number of unexpected emergent benefits such as improved object detection performance and previously unseen robustness towards a wide range of image distortions, highlighting advantages of a shape-based representation. Click to Read Paper
Human visual object recognition is typically rapid and seemingly effortless, as well as largely independent of viewpoint and object orientation. Until very recently, animate visual systems were the only ones capable of this remarkable computational feat. This has changed with the rise of a class of computer vision algorithms called deep neural networks (DNNs) that achieve human-level classification performance on object recognition tasks. Furthermore, a growing number of studies report similarities in the way DNNs and the human visual system process objects, suggesting that current DNNs may be good models of human visual object recognition. Yet there clearly exist important architectural and processing differences between state-of-the-art DNNs and the primate visual system. The potential behavioural consequences of these differences are not well understood. We aim to address this issue by comparing human and DNN generalisation abilities towards image degradations. We find the human visual system to be more robust to image manipulations like contrast reduction, additive noise or novel eidolon-distortions. In addition, we find progressively diverging classification error-patterns between man and DNNs when the signal gets weaker, indicating that there may still be marked differences in the way humans and current DNNs perform visual object recognition. We envision that our findings as well as our carefully measured and freely available behavioural datasets provide a new useful benchmark for the computer vision community to improve the robustness of DNNs and a motivation for neuroscientists to search for mechanisms in the brain that could facilitate this robustness. Click to Read Paper
We compare the robustness of humans and current convolutional deep neural networks (DNNs) on object recognition under twelve different types of image degradations. First, using three well known DNNs (ResNet-152, VGG-19, GoogLeNet) we find the human visual system to be more robust to nearly all of the tested image manipulations, and we observe progressively diverging classification error-patterns between humans and DNNs when the signal gets weaker. Secondly, we show that DNNs trained directly on distorted images consistently surpass human performance on the exact distortion types they were trained on, yet they display extremely poor generalisation abilities when tested on other distortion types. For example, training on salt-and-pepper noise does not imply robustness on uniform white noise and vice versa. Thus, changes in the noise distribution between training and testing constitutes a crucial challenge to deep learning vision systems that can be systematically addressed in a lifelong machine learning approach. Our new dataset consisting of 83K carefully measured human psychophysical trials provide a useful reference for lifelong robustness against image degradations set by the human visual system. Click to Read Paper