Models, code, and papers for "Fred Morstatter":

SlangSD: Building and Using a Sentiment Dictionary of Slang Words for Short-Text Sentiment Classification

Aug 17, 2016
Liang Wu, Fred Morstatter, Huan Liu

Sentiment in social media is increasingly considered as an important resource for customer segmentation, market understanding, and tackling other socio-economic issues. However, sentiment in social media is difficult to measure since user-generated content is usually short and informal. Although many traditional sentiment analysis methods have been proposed, identifying slang sentiment words remains untackled. One of the reasons is that slang sentiment words are not available in existing dictionaries or sentiment lexicons. To this end, we propose to build the first sentiment dictionary of slang words to aid sentiment analysis of social media content. It is laborious and time-consuming to collect and label the sentiment polarity of a comprehensive list of slang words. We present an approach to leverage web resources to construct an extensive Slang Sentiment word Dictionary (SlangSD) that is easy to maintain and extend. SlangSD is publicly available for research purposes. We empirically show the advantages of using SlangSD, the newly-built slang sentiment word dictionary for sentiment classification, and provide examples demonstrating its ease of use with an existing sentiment system.

* 15 pages, 2 figures 

  Click for Model/Code and Paper
Cross-Platform Emoji Interpretation: Analysis, a Solution, and Applications

Sep 14, 2017
Fred Morstatter, Kai Shu, Suhang Wang, Huan Liu

Most social media platforms are largely based on text, and users often write posts to describe where they are, what they are seeing, and how they are feeling. Because written text lacks the emotional cues of spoken and face-to-face dialogue, ambiguities are common in written language. This problem is exacerbated in the short, informal nature of many social media posts. To bypass this issue, a suite of special characters called "emojis," which are small pictograms, are embedded within the text. Many emojis are small depictions of facial expressions designed to help disambiguate the emotional meaning of the text. However, a new ambiguity arises in the way that emojis are rendered. Every platform (Windows, Mac, and Android, to name a few) renders emojis according to their own style. In fact, it has been shown that some emojis can be rendered so differently that they look "happy" on some platforms, and "sad" on others. In this work, we use real-world data to verify the existence of this problem. We verify that the usage of the same emoji can be significantly different across platforms, with some emojis exhibiting different sentiment polarities on different platforms. We propose a solution to identify the intended emoji based on the platform-specific nature of the emoji used by the author of a social media post. We apply our solution to sentiment analysis, a task that can benefit from the emoji calibration technique we use in this work. We conduct experiments to evaluate the effectiveness of the mapping in this task.

  Click for Model/Code and Paper
Man is to Person as Woman is to Location: Measuring Gender Bias in Named Entity Recognition

Oct 24, 2019
Ninareh Mehrabi, Thamme Gowda, Fred Morstatter, Nanyun Peng, Aram Galstyan

We study the bias in several state-of-the-art named entity recognition (NER) models---specifically, a difference in the ability to recognize male and female names as PERSON entity types. We evaluate NER models on a dataset containing 139 years of U.S. census baby names and find that relatively more female names, as opposed to male names, are not recognized as PERSON entities. We study the extent of this bias in several NER systems that are used prominently in industry and academia. In addition, we also report a bias in the datasets on which these models were trained. The result of this analysis yields a new benchmark for gender bias evaluation in named entity recognition systems. The data and code for the application of this benchmark will be publicly available for researchers to use.

  Click for Model/Code and Paper
A Survey on Bias and Fairness in Machine Learning

Sep 17, 2019
Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, Aram Galstyan

With the widespread use of AI systems and applications in our everyday lives, it is important to take fairness issues into consideration while designing and engineering these types of systems. Such systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that the decisions do not reflect discriminatory behavior toward certain groups or populations. We have recently seen work in machine learning, natural language processing, and deep learning that addresses such challenges in different subdomains. With the commercialization of these systems, researchers are becoming aware of the biases that these applications can contain and have attempted to address them. In this survey we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined in order to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and how they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.

  Click for Model/Code and Paper
Finding Eyewitness Tweets During Crises

Mar 07, 2014
Fred Morstatter, Nichola Lubold, Heather Pon-Barry, Jürgen Pfeffer, Huan Liu

Disaster response agencies have started to incorporate social media as a source of fast-breaking information to understand the needs of people affected by the many crises that occur around the world. These agencies look for tweets from within the region affected by the crisis to get the latest updates of the status of the affected region. However only 1% of all tweets are geotagged with explicit location information. First responders lose valuable information because they cannot assess the origin of many of the tweets they collect. In this work we seek to identify non-geotagged tweets that originate from within the crisis region. Towards this, we address three questions: (1) is there a difference between the language of tweets originating within a crisis region and tweets originating outside the region, (2) what are the linguistic patterns that can be used to differentiate within-region and outside-region tweets, and (3) for non-geotagged tweets, can we automatically identify those originating within the crisis region in real-time?

  Click for Model/Code and Paper
Identifying and Analyzing Cryptocurrency Manipulations in Social Media

Feb 04, 2019
Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Fred Morstatter, Greg Ver Steeg, Aram Galstyan

Interest surrounding cryptocurrencies, digital or virtual currencies that are used as a medium for financial transactions, has grown tremendously in recent years. The anonymity surrounding these currencies makes investors particularly susceptible to fraud---such as "pump and dump" scams---where the goal is to artificially inflate the perceived worth of a currency, luring victims into investing before the fraudsters can sell their holdings. Because of the speed and relative anonymity offered by social platforms such as Twitter and Telegram, social media has become a preferred platform for scammers who wish to spread false hype about the cryptocurrency they are trying to pump. In this work we propose and evaluate a computational approach that can automatically identify pump and dump scams as they unfold by combining information across social media platforms. We also develop a multi-modal approach for predicting whether a particular pump attempt will succeed or not. Finally, we analyze the prevalence of bots in cryptocurrency related tweets, and observe a significant increase in bot activity during the pump attempts.

  Click for Model/Code and Paper
Feature Selection: A Data Perspective

Aug 26, 2018
Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang Tang, Huan Liu

Feature selection, as a data preprocessing strategy, has been proven to be effective and efficient in preparing data (especially high-dimensional data) for various data mining and machine learning problems. The objectives of feature selection include: building simpler and more comprehensible models, improving data mining performance, and preparing clean, understandable data. The recent proliferation of big data has presented some substantial challenges and opportunities to feature selection. In this survey, we provide a comprehensive and structured overview of recent advances in feature selection research. Motivated by current challenges and opportunities in the era of big data, we revisit feature selection research from a data perspective and review representative feature selection algorithms for conventional data, structured data, heterogeneous data and streaming data. Methodologically, to emphasize the differences and similarities of most existing feature selection algorithms for conventional data, we categorize them into four main groups: similarity based, information theoretical based, sparse learning based and statistical based methods. To facilitate and promote the research in this community, we also present an open-source feature selection repository that consists of most of the popular feature selection algorithms (\url{}). Also, we use it as an example to show how to evaluate feature selection algorithms. At the end of the survey, we present a discussion about some open problems and challenges that require more attention in future research.

* ACM Computing Surveys (CSUR), 50(6): 94:1-94:45, 2017 

  Click for Model/Code and Paper