Models, code, and papers for "Georgia Gkioxari":

Finding Action Tubes

Nov 21, 2014
Georgia Gkioxari, Jitendra Malik

We address the problem of action detection in videos. Driven by the latest progress in object detection from 2D images, we build action models using rich feature hierarchies derived from shape and kinematic cues. We incorporate appearance and motion in two ways. First, starting from image region proposals we select those that are motion salient and thus are more likely to contain the action. This leads to a significant reduction in the number of regions being processed and allows for faster computations. Second, we extract spatio-temporal feature representations to build strong classifiers using Convolutional Neural Networks. We link our predictions to produce detections consistent in time, which we call action tubes. We show that our approach outperforms other techniques in the task of action detection.


  Click for Model/Code and Paper
Mesh R-CNN

Jun 06, 2019
Georgia Gkioxari, Jitendra Malik, Justin Johnson

Rapid advances in 2D perception have led to systems that accurately detect objects in real-world images. However, these systems make predictions in 2D, ignoring the 3D structure of the world. Concurrently, advances in 3D shape prediction have mostly focused on synthetic benchmarks and isolated objects. We unify advances in these two areas. We propose a system that detects objects in real-world images and produces a triangle mesh giving the full 3D shape of each detected object. Our system, called Mesh R-CNN, augments Mask R-CNN with a mesh prediction branch that outputs meshes with varying topological structure by first predicting coarse voxel representations which are converted to meshes and refined with a graph convolution network operating over the mesh's vertices and edges. We validate our mesh prediction branch on ShapeNet, where we outperform prior work on single-image shape prediction. We then deploy our full Mesh R-CNN system on Pix3D, where we jointly detect objects and predict their 3D shapes.


  Click for Model/Code and Paper
Chained Predictions Using Convolutional Neural Networks

Oct 23, 2016
Georgia Gkioxari, Alexander Toshev, Navdeep Jaitly

In this paper, we present an adaptation of the sequence-to-sequence model for structured output prediction in vision tasks. In this model the output variables for a given input are predicted sequentially using neural networks. The prediction for each output variable depends not only on the input but also on the previously predicted output variables. The model is applied to spatial localization tasks and uses convolutional neural networks (CNNs) for processing input images and a multi-scale deconvolutional architecture for making spatial predictions at each time step. We explore the impact of weight sharing with a recurrent connection matrix between consecutive predictions, and compare it to a formulation where these weights are not tied. Untied weights are particularly suited for problems with a fixed sized structure, where different classes of output are predicted in different steps. We show that chained predictions achieve top performing results on human pose estimation from single images and videos.

* in submission to EECV 2016 

  Click for Model/Code and Paper
Contextual Action Recognition with R*CNN

Mar 25, 2016
Georgia Gkioxari, Ross Girshick, Jitendra Malik

There are multiple cues in an image which reveal what action a person is performing. For example, a jogger has a pose that is characteristic for jogging, but the scene (e.g. road, trail) and the presence of other joggers can be an additional source of information. In this work, we exploit the simple observation that actions are accompanied by contextual cues to build a strong action recognition system. We adapt RCNN to use more than one region for classification while still maintaining the ability to localize the action. We call our system R*CNN. The action-specific models and the feature maps are trained jointly, allowing for action specific representations to emerge. R*CNN achieves 90.2% mean AP on the PASAL VOC Action dataset, outperforming all other approaches in the field by a significant margin. Last, we show that R*CNN is not limited to action recognition. In particular, R*CNN can also be used to tackle fine-grained tasks such as attribute classification. We validate this claim by reporting state-of-the-art performance on the Berkeley Attributes of People dataset.


  Click for Model/Code and Paper
Actions and Attributes from Wholes and Parts

May 05, 2015
Georgia Gkioxari, Ross Girshick, Jitendra Malik

We investigate the importance of parts for the tasks of action and attribute classification. We develop a part-based approach by leveraging convolutional network features inspired by recent advances in computer vision. Our part detectors are a deep version of poselets and capture parts of the human body under a distinct set of poses. For the tasks of action and attribute classification, we train holistic convolutional neural networks and show that adding parts leads to top-performing results for both tasks. In addition, we demonstrate the effectiveness of our approach when we replace an oracle person detector, as is the default in the current evaluation protocol for both tasks, with a state-of-the-art person detection system.


  Click for Model/Code and Paper
Building Generalizable Agents with a Realistic and Rich 3D Environment

Apr 08, 2018
Yi Wu, Yuxin Wu, Georgia Gkioxari, Yuandong Tian

Teaching an agent to navigate in an unseen 3D environment is a challenging task, even in the event of simulated environments. To generalize to unseen environments, an agent needs to be robust to low-level variations (e.g. color, texture, object changes), and also high-level variations (e.g. layout changes of the environment). To improve overall generalization, all types of variations in the environment have to be taken under consideration via different level of data augmentation steps. To this end, we propose House3D, a rich, extensible and efficient environment that contains 45,622 human-designed 3D scenes of visually realistic houses, ranging from single-room studios to multi-storied houses, equipped with a diverse set of fully labeled 3D objects, textures and scene layouts, based on the SUNCG dataset (Song et.al.). The diversity in House3D opens the door towards scene-level augmentation, while the label-rich nature of House3D enables us to inject pixel- & task-level augmentations such as domain randomization (Toubin et. al.) and multi-task training. Using a subset of houses in House3D, we show that reinforcement learning agents trained with an enhancement of different levels of augmentations perform much better in unseen environments than our baselines with raw RGB input by over 8% in terms of navigation success rate. House3D is publicly available at http://github.com/facebookresearch/House3D.

* updated with improved content and more experinemnts 

  Click for Model/Code and Paper
Detecting and Recognizing Human-Object Interactions

Mar 27, 2018
Georgia Gkioxari, Ross Girshick, Piotr Dollár, Kaiming He

To understand the visual world, a machine must not only recognize individual object instances but also how they interact. Humans are often at the center of such interactions and detecting human-object interactions is an important practical and scientific problem. In this paper, we address the task of detecting <human, verb, object> triplets in challenging everyday photos. We propose a novel model that is driven by a human-centric approach. Our hypothesis is that the appearance of a person -- their pose, clothing, action -- is a powerful cue for localizing the objects they are interacting with. To exploit this cue, our model learns to predict an action-specific density over target object locations based on the appearance of a detected person. Our model also jointly learns to detect people and objects, and by fusing these predictions it efficiently infers interaction triplets in a clean, jointly trained end-to-end system we call InteractNet. We validate our approach on the recently introduced Verbs in COCO (V-COCO) and HICO-DET datasets, where we show quantitatively compelling results.


  Click for Model/Code and Paper
Mask R-CNN

Jan 24, 2018
Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick

We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code has been made available at: https://github.com/facebookresearch/Detectron

* open source; appendix on more results 

  Click for Model/Code and Paper
R-CNNs for Pose Estimation and Action Detection

Jun 19, 2014
Georgia Gkioxari, Bharath Hariharan, Ross Girshick, Jitendra Malik

We present convolutional neural networks for the tasks of keypoint (pose) prediction and action classification of people in unconstrained images. Our approach involves training an R-CNN detector with loss functions depending on the task being tackled. We evaluate our method on the challenging PASCAL VOC dataset and compare it to previous leading approaches. Our method gives state-of-the-art results for keypoint and action prediction. Additionally, we introduce a new dataset for action detection, the task of simultaneously localizing people and classifying their actions, and present results using our approach.


  Click for Model/Code and Paper
Data Distillation: Towards Omni-Supervised Learning

Dec 12, 2017
Ilija Radosavovic, Piotr Dollár, Ross Girshick, Georgia Gkioxari, Kaiming He

We investigate omni-supervised learning, a special regime of semi-supervised learning in which the learner exploits all available labeled data plus internet-scale sources of unlabeled data. Omni-supervised learning is lower-bounded by performance on existing labeled datasets, offering the potential to surpass state-of-the-art fully supervised methods. To exploit the omni-supervised setting, we propose data distillation, a method that ensembles predictions from multiple transformations of unlabeled data, using a single model, to automatically generate new training annotations. We argue that visual recognition models have recently become accurate enough that it is now possible to apply classic ideas about self-training to challenging real-world data. Our experimental results show that in the cases of human keypoint detection and general object detection, state-of-the-art models trained with data distillation surpass the performance of using labeled data from the COCO dataset alone.

* tech report 

  Click for Model/Code and Paper
Neural Modular Control for Embodied Question Answering

Oct 26, 2018
Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh, Dhruv Batra

We present a modular approach for learning policies for navigation over long planning horizons from language input. Our hierarchical policy operates at multiple timescales, where the higher-level master policy proposes subgoals to be executed by specialized sub-policies. Our choice of subgoals is compositional and semantic, i.e. they can be sequentially combined in arbitrary orderings, and assume human-interpretable descriptions (e.g. 'exit room', 'find kitchen', 'find refrigerator', etc.). We use imitation learning to warm-start policies at each level of the hierarchy, dramatically increasing sample efficiency, followed by reinforcement learning. Independent reinforcement learning at each level of hierarchy enables sub-policies to adapt to consequences of their actions and recover from errors. Subsequent joint hierarchical training enables the master policy to adapt to the sub-policies.

* 10 pages, 3 figures, 2 tables. Published at CoRL 2018. Webpage: https://embodiedqa.org/ 

  Click for Model/Code and Paper
Detect-and-Track: Efficient Pose Estimation in Videos

May 02, 2018
Rohit Girdhar, Georgia Gkioxari, Lorenzo Torresani, Manohar Paluri, Du Tran

This paper addresses the problem of estimating and tracking human body keypoints in complex, multi-person video. We propose an extremely lightweight yet highly effective approach that builds upon the latest advancements in human detection and video understanding. Our method operates in two-stages: keypoint estimation in frames or short clips, followed by lightweight tracking to generate keypoint predictions linked over the entire video. For frame-level pose estimation we experiment with Mask R-CNN, as well as our own proposed 3D extension of this model, which leverages temporal information over small clips to generate more robust frame predictions. We conduct extensive ablative experiments on the newly released multi-person video pose estimation benchmark, PoseTrack, to validate various design choices of our model. Our approach achieves an accuracy of 55.2% on the validation and 51.8% on the test set using the Multi-Object Tracking Accuracy (MOTA) metric, and achieves state of the art performance on the ICCV 2017 PoseTrack keypoint tracking challenge.

* In CVPR 2018. Ranked first in ICCV 2017 PoseTrack challenge (keypoint tracking in videos). Code: https://github.com/facebookresearch/DetectAndTrack and webpage: https://rohitgirdhar.github.io/DetectAndTrack/ 

  Click for Model/Code and Paper
Bayesian Relational Memory for Semantic Visual Navigation

Sep 10, 2019
Yi Wu, Yuxin Wu, Aviv Tamar, Stuart Russell, Georgia Gkioxari, Yuandong Tian

We introduce a new memory architecture, Bayesian Relational Memory (BRM), to improve the generalization ability for semantic visual navigation agents in unseen environments, where an agent is given a semantic target to navigate towards. BRM takes the form of a probabilistic relation graph over semantic entities (e.g., room types), which allows (1) capturing the layout prior from training environments, i.e., prior knowledge, (2) estimating posterior layout at test time, i.e., memory update, and (3) efficient planning for navigation, altogether. We develop a BRM agent consisting of a BRM module for producing sub-goals and a goal-conditioned locomotion module for control. When testing in unseen environments, the BRM agent outperforms baselines that do not explicitly utilize the probabilistic relational memory structure

* Accepted at ICCV 2019 

  Click for Model/Code and Paper
Learning and Planning with a Semantic Model

Sep 28, 2018
Yi Wu, Yuxin Wu, Aviv Tamar, Stuart Russell, Georgia Gkioxari, Yuandong Tian

Building deep reinforcement learning agents that can generalize and adapt to unseen environments remains a fundamental challenge for AI. This paper describes progresses on this challenge in the context of man-made environments, which are visually diverse but contain intrinsic semantic regularities. We propose a hybrid model-based and model-free approach, LEArning and Planning with Semantics (LEAPS), consisting of a multi-target sub-policy that acts on visual inputs, and a Bayesian model over semantic structures. When placed in an unseen environment, the agent plans with the semantic model to make high-level decisions, proposes the next sub-target for the sub-policy to execute, and updates the semantic model based on new observations. We perform experiments in visual navigation tasks using House3D, a 3D environment that contains diverse human-designed indoor scenes with real-world objects. LEAPS outperforms strong baselines that do not explicitly plan using the semantic content.

* submitted to ICLR 2019 

  Click for Model/Code and Paper
Embodied Question Answering

Dec 01, 2017
Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, Dhruv Batra

We present a new AI task -- Embodied Question Answering (EmbodiedQA) -- where an agent is spawned at a random location in a 3D environment and asked a question ("What color is the car?"). In order to answer, the agent must first intelligently navigate to explore the environment, gather information through first-person (egocentric) vision, and then answer the question ("orange"). This challenging task requires a range of AI skills -- active perception, language understanding, goal-driven navigation, commonsense reasoning, and grounding of language into actions. In this work, we develop the environments, end-to-end-trained reinforcement learning agents, and evaluation protocols for EmbodiedQA.

* 20 pages, 13 figures, Webpage: https://embodiedqa.org/ 

  Click for Model/Code and Paper
Multi-Target Embodied Question Answering

Apr 09, 2019
Licheng Yu, Xinlei Chen, Georgia Gkioxari, Mohit Bansal, Tamara L. Berg, Dhruv Batra

Embodied Question Answering (EQA) is a relatively new task where an agent is asked to answer questions about its environment from egocentric perception. EQA makes the fundamental assumption that every question, e.g., "what color is the car?", has exactly one target ("car") being inquired about. This assumption puts a direct limitation on the abilities of the agent. We present a generalization of EQA - Multi-Target EQA (MT-EQA). Specifically, we study questions that have multiple targets in them, such as "Is the dresser in the bedroom bigger than the oven in the kitchen?", where the agent has to navigate to multiple locations ("dresser in bedroom", "oven in kitchen") and perform comparative reasoning ("dresser" bigger than "oven") before it can answer a question. Such questions require the development of entirely new modules or components in the agent. To address this, we propose a modular architecture composed of a program generator, a controller, a navigator, and a VQA module. The program generator converts the given question into sequential executable sub-programs; the navigator guides the agent to multiple locations pertinent to the navigation-related sub-programs; and the controller learns to select relevant observations along its path. These observations are then fed to the VQA module to predict the answer. We perform detailed analysis for each of the model components and show that our joint model can outperform previous methods and strong baselines by a significant margin.

* 10 pages, 6 figures 

  Click for Model/Code and Paper
Embodied Question Answering in Photorealistic Environments with Point Cloud Perception

Apr 06, 2019
Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, Dhruv Batra

To help bridge the gap between internet vision-style problems and the goal of vision for embodied perception we instantiate a large-scale navigation task -- Embodied Question Answering [1] in photo-realistic environments (Matterport 3D). We thoroughly study navigation policies that utilize 3D point clouds, RGB images, or their combination. Our analysis of these models reveals several key findings. We find that two seemingly naive navigation baselines, forward-only and random, are strong navigators and challenging to outperform, due to the specific choice of the evaluation setting presented by [1]. We find a novel loss-weighting scheme we call Inflection Weighting to be important when training recurrent models for navigation with behavior cloning and are able to out perform the baselines with this technique. We find that point clouds provide a richer signal than RGB images for learning obstacle avoidance, motivating the use (and continued study) of 3D deep learning models for embodied navigation.


  Click for Model/Code and Paper