Research papers and code for "Gilles Louppe":
Data analysis and machine learning have become an integrative part of the modern scientific methodology, offering automated procedures for the prediction of a phenomenon based on past observations, unraveling underlying patterns in data and providing insights about the problem. Yet, caution should avoid using machine learning as a black-box tool, but rather consider it as a methodology, with a rational thought process that is entirely dependent on the problem under study. In particular, the use of algorithms should ideally require a reasonable understanding of their mechanisms, properties and limitations, in order to better apprehend and interpret their results. Accordingly, the goal of this thesis is to provide an in-depth analysis of random forests, consistently calling into question each and every part of the algorithm, in order to shed new light on its learning capabilities, inner workings and interpretability. The first part of this work studies the induction of decision trees and the construction of ensembles of randomized trees, motivating their design and purpose whenever possible. Our contributions follow with an original complexity analysis of random forests, showing their good computational performance and scalability, along with an in-depth discussion of their implementation details, as contributed within Scikit-Learn. In the second part of this work, we analyse and discuss the interpretability of random forests in the eyes of variable importance measures. The core of our contributions rests in the theoretical characterization of the Mean Decrease of Impurity variable importance measure, from which we prove and derive some of its properties in the case of multiway totally randomized trees and in asymptotic conditions. In consequence of this work, our analysis demonstrates that variable importances [...].

* PhD thesis. Source code available at https://github.com/glouppe/phd-thesis
Click to Read Paper and Get Code
Distributed asynchronous SGD has become widely used for deep learning in large-scale systems, but remains notorious for its instability when increasing the number of workers. In this work, we study the dynamics of distributed asynchronous SGD under the lens of Lagrangian mechanics. Using this description, we introduce the concept of energy to describe the optimization process and derive a sufficient condition ensuring its stability as long as the collective energy induced by the active workers remains below the energy of a target synchronous process. Making use of this criterion, we derive a stable distributed asynchronous optimization procedure, GEM, that estimates and maintains the energy of the asynchronous system below or equal to the energy of sequential SGD with momentum. Experimental results highlight the stability and speedup of GEM compared to existing schemes, even when scaling to one hundred asynchronous workers. Results also indicate better generalization compared to the targeted SGD with momentum.

Click to Read Paper and Get Code
We propose a novel approach for posterior sampling with intractable likelihoods. This is an increasingly important problem in scientific applications where models are implemented as sophisticated computer simulations. As a result, tractable densities are not available, which forces practitioners to rely on approximations during inference. We address the intractability of densities by training a parameterized classifier whose output is used to approximate likelihood ratios between arbitrary model parameters. In turn, we are able to draw posterior samples by plugging this approximator into common Markov chain Monte Carlo samplers such as Metropolis-Hastings and Hamiltonian Monte Carlo. We demonstrate the proposed technique by fitting the generating parameters of implicit models, ranging from a linear probabilistic model to settings in high energy physics with high-dimensional observations. Finally, we discuss several diagnostics to assess the quality of the posterior.

* 13 pages, 10 figures
Click to Read Paper and Get Code
Likelihood-free inference is concerned with the estimation of the parameters of a non-differentiable stochastic simulator that best reproduce real observations. In the absence of a likelihood function, most of the existing inference methods optimize the simulator parameters through a handcrafted iterative procedure that tries to make the simulated data more similar to the observations. In this work, we explore whether meta-learning can be used in the likelihood-free context, for learning automatically from data an iterative optimization procedure that would solve likelihood-free inference problems. We design a recurrent inference machine that learns a sequence of parameter updates leading to good parameter estimates, without ever specifying some explicit notion of divergence between the simulated data and the real data distributions. We demonstrate our approach on toy simulators, showing promising results both in terms of performance and robustness.

* NeurIPS 2018 Workshop on Meta-learning (MetaLearn 2018)
Click to Read Paper and Get Code
Complex computer simulators are increasingly used across fields of science as generative models tying parameters of an underlying theory to experimental observations. Inference in this setup is often difficult, as simulators rarely admit a tractable density or likelihood function. We introduce Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-differentiable generative model incorporating ideas from generative adversarial networks, variational optimization and empirical Bayes. We adapt the training procedure of generative adversarial networks by replacing the differentiable generative network with a domain-specific simulator. We solve the resulting non-differentiable minimax problem by minimizing variational upper bounds of the two adversarial objectives. Effectively, the procedure results in learning a proposal distribution over simulator parameters, such that the JS divergence between the marginal distribution of the synthetic data and the empirical distribution of observed data is minimized. We evaluate and compare the method with simulators producing both discrete and continuous data.

Click to Read Paper and Get Code
Several techniques for domain adaptation have been proposed to account for differences in the distribution of the data used for training and testing. The majority of this work focuses on a binary domain label. Similar problems occur in a scientific context where there may be a continuous family of plausible data generation processes associated to the presence of systematic uncertainties. Robust inference is possible if it is based on a pivot -- a quantity whose distribution does not depend on the unknown values of the nuisance parameters that parametrize this family of data generation processes. In this work, we introduce and derive theoretical results for a training procedure based on adversarial networks for enforcing the pivotal property (or, equivalently, fairness with respect to continuous attributes) on a predictive model. The method includes a hyperparameter to control the trade-off between accuracy and robustness. We demonstrate the effectiveness of this approach with a toy example and examples from particle physics.

* v1: Original submission. v2: Fixed references. v3: version submitted to NIPS'2017. Code available at https://github.com/glouppe/paper-learning-to-pivot
Click to Read Paper and Get Code
In many fields of science, generalized likelihood ratio tests are established tools for statistical inference. At the same time, it has become increasingly common that a simulator (or generative model) is used to describe complex processes that tie parameters $\theta$ of an underlying theory and measurement apparatus to high-dimensional observations $\mathbf{x}\in \mathbb{R}^p$. However, simulator often do not provide a way to evaluate the likelihood function for a given observation $\mathbf{x}$, which motivates a new class of likelihood-free inference algorithms. In this paper, we show that likelihood ratios are invariant under a specific class of dimensionality reduction maps $\mathbb{R}^p \mapsto \mathbb{R}$. As a direct consequence, we show that discriminative classifiers can be used to approximate the generalized likelihood ratio statistic when only a generative model for the data is available. This leads to a new machine learning-based approach to likelihood-free inference that is complementary to Approximate Bayesian Computation, and which does not require a prior on the model parameters. Experimental results on artificial problems with known exact likelihoods illustrate the potential of the proposed method.

* 35 pages, 5 figures
Click to Read Paper and Get Code
We introduce a novel Deep Reinforcement Learning (DRL) algorithm called Deep Quality-Value (DQV) Learning. DQV uses temporal-difference learning to train a Value neural network and uses this network for training a second Quality-value network that learns to estimate state-action values. We first test DQV's update rules with Multilayer Perceptrons as function approximators on two classic RL problems, and then extend DQV with the use of Deep Convolutional Neural Networks, `Experience Replay' and `Target Neural Networks' for tackling four games of the Atari Arcade Learning environment. Our results show that DQV learns significantly faster and better than Deep Q-Learning and Double Deep Q-Learning, suggesting that our algorithm can potentially be a better performing synchronous temporal difference algorithm than what is currently present in DRL.

Click to Read Paper and Get Code
Simulators often provide the best description of real-world phenomena. However, they also lead to challenging inverse problems because the density they implicitly define is often intractable. We present a new suite of simulation-based inference techniques that go beyond the traditional Approximate Bayesian Computation approach, which struggles in a high-dimensional setting, and extend methods that use surrogate models based on neural networks. We show that additional information, such as the joint likelihood ratio and the joint score, can often be extracted from simulators and used to augment the training data for these surrogate models. Finally, we demonstrate that these new techniques are more sample efficient and provide higher-fidelity inference than traditional methods.

* Code available at https://github.com/johannbrehmer/simulator-mining-example . v2: Fixed typos. v3: Expanded discussion, added Lotka-Volterra example
Click to Read Paper and Get Code
We develop, discuss, and compare several inference techniques to constrain theory parameters in collider experiments. By harnessing the latent-space structure of particle physics processes, we extract extra information from the simulator. This augmented data can be used to train neural networks that precisely estimate the likelihood ratio. The new methods scale well to many observables and high-dimensional parameter spaces, do not require any approximations of the parton shower and detector response, and can be evaluated in microseconds. Using weak-boson-fusion Higgs production as an example process, we compare the performance of several techniques. The best results are found for likelihood ratio estimators trained with extra information about the score, the gradient of the log likelihood function with respect to the theory parameters. The score also provides sufficient statistics that contain all the information needed for inference in the neighborhood of the Standard Model. These methods enable us to put significantly stronger bounds on effective dimension-six operators than the traditional approach based on histograms. They also outperform generic machine learning methods that do not make use of the particle physics structure, demonstrating their potential to substantially improve the new physics reach of the LHC legacy results.

* Phys. Rev. D 98, 052004 (2018)
* See also the companion publication "Constraining Effective Field Theories with Machine Learning" at arXiv:1805.00013, a brief introduction presenting the key ideas. The code for these studies is available at https://github.com/johannbrehmer/higgs_inference . v2: Added references. v3: Improved description of algorithms, added references. v4: Clarified text, added references
Click to Read Paper and Get Code
We present powerful new analysis techniques to constrain effective field theories at the LHC. By leveraging the structure of particle physics processes, we extract extra information from Monte-Carlo simulations, which can be used to train neural network models that estimate the likelihood ratio. These methods scale well to processes with many observables and theory parameters, do not require any approximations of the parton shower or detector response, and can be evaluated in microseconds. We show that they allow us to put significantly stronger bounds on dimension-six operators than existing methods, demonstrating their potential to improve the precision of the LHC legacy constraints.

* Phys. Rev. Lett. 121, 111801 (2018)
* See also the companion publication "A Guide to Constraining Effective Field Theories with Machine Learning" at arXiv:1805.00020, an in-depth analysis of machine learning techniques for LHC measurements. The code for these studies is available at https://github.com/johannbrehmer/higgs_inference . v2: New schematic figure explaining the new algorithms, added references. v3, v4: Added references
Click to Read Paper and Get Code
Recent progress in applying machine learning for jet physics has been built upon an analogy between calorimeters and images. In this work, we present a novel class of recursive neural networks built instead upon an analogy between QCD and natural languages. In the analogy, four-momenta are like words and the clustering history of sequential recombination jet algorithms is like the parsing of a sentence. Our approach works directly with the four-momenta of a variable-length set of particles, and the jet-based tree structure varies on an event-by-event basis. Our experiments highlight the flexibility of our method for building task-specific jet embeddings and show that recursive architectures are significantly more accurate and data efficient than previous image-based networks. We extend the analogy from individual jets (sentences) to full events (paragraphs), and show for the first time an event-level classifier operating on all the stable particles produced in an LHC event.

* 16 pages, 5 figures, 3 appendices, corresponding code at https://github.com/glouppe/recnn
Click to Read Paper and Get Code
Author name disambiguation in bibliographic databases is the problem of grouping together scientific publications written by the same person, accounting for potential homonyms and/or synonyms. Among solutions to this problem, digital libraries are increasingly offering tools for authors to manually curate their publications and claim those that are theirs. Indirectly, these tools allow for the inexpensive collection of large annotated training data, which can be further leveraged to build a complementary automated disambiguation system capable of inferring patterns for identifying publications written by the same person. Building on more than 1 million publicly released crowdsourced annotations, we propose an automated author disambiguation solution exploiting this data (i) to learn an accurate classifier for identifying coreferring authors and (ii) to guide the clustering of scientific publications by distinct authors in a semi-supervised way. To the best of our knowledge, our analysis is the first to be carried out on data of this size and coverage. With respect to the state of the art, we validate the general pipeline used in most existing solutions, and improve by: (i) proposing phonetic-based blocking strategies, thereby increasing recall; and (ii) adding strong ethnicity-sensitive features for learning a linkage function, thereby tailoring disambiguation to non-Western author names whenever necessary.

Click to Read Paper and Get Code
We extend recent work (Brehmer, et. al., 2018) that use neural networks as surrogate models for likelihood-free inference. As in the previous work, we exploit the fact that the joint likelihood ratio and joint score, conditioned on both observed and latent variables, can often be extracted from an implicit generative model or simulator to augment the training data for these surrogate models. We show how this augmented training data can be used to provide a new cross-entropy estimator, which provides improved sample efficiency compared to previous loss functions exploiting this augmented training data.

* 8 pages, 3 figures
Click to Read Paper and Get Code
Dealing with datasets of very high dimension is a major challenge in machine learning. In this paper, we consider the problem of feature selection in applications where the memory is not large enough to contain all features. In this setting, we propose a novel tree-based feature selection approach that builds a sequence of randomized trees on small subsamples of variables mixing both variables already identified as relevant by previous models and variables randomly selected among the other variables. As our main contribution, we provide an in-depth theoretical analysis of this method in infinite sample setting. In particular, we study its soundness with respect to common definitions of feature relevance and its convergence speed under various variable dependance scenarios. We also provide some preliminary empirical results highlighting the potential of the approach.

Click to Read Paper and Get Code
One major challenge for the legacy measurements at the LHC is that the likelihood function is not tractable when the collected data is high-dimensional and the detector response has to be modeled. We review how different analysis strategies solve this issue, including the traditional histogram approach used in most particle physics analyses, the Matrix Element Method, Optimal Observables, and modern techniques based on neural density estimation. We then discuss powerful new inference methods that use a combination of matrix element information and machine learning to accurately estimate the likelihood function. The MadMiner package automates all necessary data-processing steps. In first studies we find that these new techniques have the potential to substantially improve the sensitivity of the LHC legacy measurements.

* Keynote at the 19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2019)
Click to Read Paper and Get Code
In many cases, feature selection is often more complicated than identifying a single subset of input variables that would together explain the output. There may be interactions that depend on contextual information, i.e., variables that reveal to be relevant only in some specific circumstances. In this setting, the contribution of this paper is to extend the random forest variable importances framework in order (i) to identify variables whose relevance is context-dependent and (ii) to characterize as precisely as possible the effect of contextual information on these variables. The usage and the relevance of our framework for highlighting context-dependent variables is illustrated on both artificial and real datasets.

* Accepted for presentation at UAI 2016
Click to Read Paper and Get Code
In this work, we propose a simple yet effective solution to the problem of connectome inference in calcium imaging data. The proposed algorithm consists of two steps. First, processing the raw signals to detect neural peak activities. Second, inferring the degree of association between neurons from partial correlation statistics. This paper summarises the methodology that led us to win the Connectomics Challenge, proposes a simplified version of our method, and finally compares our results with respect to other inference methods.

Click to Read Paper and Get Code
We present a novel framework that enables efficient probabilistic inference in large-scale scientific models by allowing the execution of existing domain-specific simulators as probabilistic programs, resulting in highly interpretable posterior inference. Our framework is general purpose and scalable, and is based on a cross-platform probabilistic execution protocol through which an inference engine can control simulators in a language-agnostic way. We demonstrate the technique in particle physics, on a scientifically accurate simulation of the tau lepton decay, which is a key ingredient in establishing the properties of the Higgs boson. High-energy physics has a rich set of simulators based on quantum field theory and the interaction of particles in matter. We show how to use probabilistic programming to perform Bayesian inference in these existing simulator codebases directly, in particular conditioning on observable outputs from a simulated particle detector to directly produce an interpretable posterior distribution over decay pathways. Inference efficiency is achieved via inference compilation where a deep recurrent neural network is trained to parameterize proposal distributions and control the stochastic simulator in a sequential importance sampling scheme, at a fraction of the computational cost of Markov chain Monte Carlo sampling.

* 18 pages, 5 figures
Click to Read Paper and Get Code
We consider the problem of Bayesian inference in the family of probabilistic models implicitly defined by stochastic generative models of data. In scientific fields ranging from population biology to cosmology, low-level mechanistic components are composed to create complex generative models. These models lead to intractable likelihoods and are typically non-differentiable, which poses challenges for traditional approaches to inference. We extend previous work in "inference compilation", which combines universal probabilistic programming and deep learning methods, to large-scale scientific simulators, and introduce a C++ based probabilistic programming library called CPProb. We successfully use CPProb to interface with SHERPA, a large code-base used in particle physics. Here we describe the technical innovations realized and planned for this library.

* 7 pages, 2 figures
Click to Read Paper and Get Code