Models, code, and papers for "Golan Pundak":

Contextual Speech Recognition with Difficult Negative Training Examples

Oct 29, 2018
Uri Alon, Golan Pundak, Tara N. Sainath

Improving the representation of contextual information is key to unlocking the potential of end-to-end (E2E) automatic speech recognition (ASR). In this work, we present a novel and simple approach for training an ASR context mechanism with difficult negative examples. The main idea is to focus on proper nouns (e.g., unique entities such as names of people and places) in the reference transcript, and use phonetically similar phrases as negative examples, encouraging the neural model to learn more discriminative representations. We apply our approach to an end-to-end contextual ASR model that jointly learns to transcribe and select the correct context items, and show that our proposed method gives up to $53.1\%$ relative improvement in word error rate (WER) across several benchmarks.

  Click for Model/Code and Paper
Phoneme-Based Contextualization for Cross-Lingual Speech Recognition in End-to-End Models

Jul 22, 2019
Ke Hu, Antoine Bruguier, Tara N. Sainath, Rohit Prabhavalkar, Golan Pundak

Contextual automatic speech recognition, i.e., biasing recognition towards a given context (e.g. user's playlists, or contacts), is challenging in end-to-end (E2E) models. Such models maintain a limited number of candidates during beam-search decoding, and have been found to recognize rare named entities poorly. The problem is exacerbated when biasing towards proper nouns in foreign languages, e.g., geographic location names, which are virtually unseen in training and are thus out-of-vocabulary (OOV). While grapheme or wordpiece E2E models might have a difficult time spelling OOV words, phonemes are more acoustically salient and past work has shown that E2E phoneme models can better predict such words. In this work, we propose an E2E model containing both English wordpieces and phonemes in the modeling space, and perform contextual biasing of foreign words at the phoneme level by mapping pronunciations of foreign words into similar English phonemes. In experimental evaluations, we find that the proposed approach performs 16% better than a grapheme-only biasing model, and 8% better than a wordpiece-only biasing model on a foreign place name recognition task, with only slight degradation on regular English tasks.

  Click for Model/Code and Paper
Deep context: end-to-end contextual speech recognition

Aug 07, 2018
Golan Pundak, Tara N. Sainath, Rohit Prabhavalkar, Anjuli Kannan, Ding Zhao

In automatic speech recognition (ASR) what a user says depends on the particular context she is in. Typically, this context is represented as a set of word n-grams. In this work, we present a novel, all-neural, end-to-end (E2E) ASR sys- tem that utilizes such context. Our approach, which we re- fer to as Contextual Listen, Attend and Spell (CLAS) jointly- optimizes the ASR components along with embeddings of the context n-grams. During inference, the CLAS system can be presented with context phrases which might contain out-of- vocabulary (OOV) terms not seen during training. We com- pare our proposed system to a more traditional contextualiza- tion approach, which performs shallow-fusion between inde- pendently trained LAS and contextual n-gram models during beam search. Across a number of tasks, we find that the pro- posed CLAS system outperforms the baseline method by as much as 68% relative WER, indicating the advantage of joint optimization over individually trained components. Index Terms: speech recognition, sequence-to-sequence models, listen attend and spell, LAS, attention, embedded speech recognition.

  Click for Model/Code and Paper
Toward domain-invariant speech recognition via large scale training

Aug 16, 2018
Arun Narayanan, Ananya Misra, Khe Chai Sim, Golan Pundak, Anshuman Tripathi, Mohamed Elfeky, Parisa Haghani, Trevor Strohman, Michiel Bacchiani

Current state-of-the-art automatic speech recognition systems are trained to work in specific `domains', defined based on factors like application, sampling rate and codec. When such recognizers are used in conditions that do not match the training domain, performance significantly drops. This work explores the idea of building a single domain-invariant model for varied use-cases by combining large scale training data from multiple application domains. Our final system is trained using 162,000 hours of speech. Additionally, each utterance is artificially distorted during training to simulate effects like background noise, codec distortion, and sampling rates. Our results show that, even at such a scale, a model thus trained works almost as well as those fine-tuned to specific subsets: A single model can be robust to multiple application domains, and variations like codecs and noise. More importantly, such models generalize better to unseen conditions and allow for rapid adaptation -- we show that by using as little as 10 hours of data from a new domain, an adapted domain-invariant model can match performance of a domain-specific model trained from scratch using 70 times as much data. We also highlight some of the limitations of such models and areas that need addressing in future work.

  Click for Model/Code and Paper
Streaming End-to-end Speech Recognition For Mobile Devices

Nov 15, 2018
Yanzhang He, Tara N. Sainath, Rohit Prabhavalkar, Ian McGraw, Raziel Alvarez, Ding Zhao, David Rybach, Anjuli Kannan, Yonghui Wu, Ruoming Pang, Qiao Liang, Deepti Bhatia, Yuan Shangguan, Bo Li, Golan Pundak, Khe Chai Sim, Tom Bagby, Shuo-yiin Chang, Kanishka Rao, Alexander Gruenstein

End-to-end (E2E) models, which directly predict output character sequences given input speech, are good candidates for on-device speech recognition. E2E models, however, present numerous challenges: In order to be truly useful, such models must decode speech utterances in a streaming fashion, in real time; they must be robust to the long tail of use cases; they must be able to leverage user-specific context (e.g., contact lists); and above all, they must be extremely accurate. In this work, we describe our efforts at building an E2E speech recognizer using a recurrent neural network transducer. In experimental evaluations, we find that the proposed approach can outperform a conventional CTC-based model in terms of both latency and accuracy in a number of evaluation categories.

  Click for Model/Code and Paper
Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling

Feb 21, 2019
Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X. Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, Yanzhang He, Jan Chorowski, Smit Hinsu, Stella Laurenzo, James Qin, Orhan Firat, Wolfgang Macherey, Suyog Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming Pang, Ron J. Weiss, Rohit Prabhavalkar, Qiao Liang, Benoit Jacob, Bowen Liang, HyoukJoong Lee, Ciprian Chelba, Sébastien Jean, Bo Li, Melvin Johnson, Rohan Anil, Rajat Tibrewal, Xiaobing Liu, Akiko Eriguchi, Navdeep Jaitly, Naveen Ari, Colin Cherry, Parisa Haghani, Otavio Good, Youlong Cheng, Raziel Alvarez, Isaac Caswell, Wei-Ning Hsu, Zongheng Yang, Kuan-Chieh Wang, Ekaterina Gonina, Katrin Tomanek, Ben Vanik, Zelin Wu, Llion Jones, Mike Schuster, Yanping Huang, Dehao Chen, Kazuki Irie, George Foster, John Richardson, Klaus Macherey, Antoine Bruguier, Heiga Zen, Colin Raffel, Shankar Kumar, Kanishka Rao, David Rybach, Matthew Murray, Vijayaditya Peddinti, Maxim Krikun, Michiel A. U. Bacchiani, Thomas B. Jablin, Rob Suderman, Ian Williams, Benjamin Lee, Deepti Bhatia, Justin Carlson, Semih Yavuz, Yu Zhang, Ian McGraw, Max Galkin, Qi Ge, Golan Pundak, Chad Whipkey, Todd Wang, Uri Alon, Dmitry Lepikhin, Ye Tian, Sara Sabour, William Chan, Shubham Toshniwal, Baohua Liao, Michael Nirschl, Pat Rondon

Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed training and quantized inference are supported directly within the framework, and it contains existing implementations of a large number of utilities, helper functions, and the newest research ideas. Lingvo has been used in collaboration by dozens of researchers in more than 20 papers over the last two years. This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the framework.

  Click for Model/Code and Paper