Models, code, and papers for "Guijin Wang":

Two-stream convolutional neural network for accurate RGB-D fingertip detection using depth and edge information

Dec 23, 2016
Hengkai Guo, Guijin Wang, Xinghao Chen

Accurate detection of fingertips in depth image is critical for human-computer interaction. In this paper, we present a novel two-stream convolutional neural network (CNN) for RGB-D fingertip detection. Firstly edge image is extracted from raw depth image using random forest. Then the edge information is combined with depth information in our CNN structure. We study several fusion approaches and suggest a slow fusion strategy as a promising way of fingertip detection. As shown in our experiments, our real-time algorithm outperforms state-of-the-art fingertip detection methods on the public dataset HandNet with an average 3D error of 9.9mm, and shows comparable accuracy of fingertip estimation on NYU hand dataset.

* Accepted by ICIP 2016 

  Click for Model/Code and Paper
Pose Guided Structured Region Ensemble Network for Cascaded Hand Pose Estimation

Jun 24, 2018
Xinghao Chen, Guijin Wang, Hengkai Guo, Cairong Zhang

Hand pose estimation from a single depth image is an essential topic in computer vision and human computer interaction. Despite recent advancements in this area promoted by convolutional neural network, accurate hand pose estimation is still a challenging problem. In this paper we propose a Pose guided structured Region Ensemble Network (Pose-REN) to boost the performance of hand pose estimation. The proposed method extracts regions from the feature maps of convolutional neural network under the guide of an initially estimated pose, generating more optimal and representative features for hand pose estimation. The extracted feature regions are then integrated hierarchically according to the topology of hand joints by employing tree-structured fully connections. A refined estimation of hand pose is directly regressed by the proposed network and the final hand pose is obtained by utilizing an iterative cascaded method. Comprehensive experiments on public hand pose datasets demonstrate that our proposed method outperforms state-of-the-art algorithms.

* Accepted by Neurocomputing 

  Click for Model/Code and Paper
Motion Feature Augmented Recurrent Neural Network for Skeleton-based Dynamic Hand Gesture Recognition

Aug 10, 2017
Xinghao Chen, Hengkai Guo, Guijin Wang, Li Zhang

Dynamic hand gesture recognition has attracted increasing interests because of its importance for human computer interaction. In this paper, we propose a new motion feature augmented recurrent neural network for skeleton-based dynamic hand gesture recognition. Finger motion features are extracted to describe finger movements and global motion features are utilized to represent the global movement of hand skeleton. These motion features are then fed into a bidirectional recurrent neural network (RNN) along with the skeleton sequence, which can augment the motion features for RNN and improve the classification performance. Experiments demonstrate that our proposed method is effective and outperforms start-of-the-art methods.

* Accepted by ICIP 2017 

  Click for Model/Code and Paper
Towards Good Practices for Deep 3D Hand Pose Estimation

Jul 23, 2017
Hengkai Guo, Guijin Wang, Xinghao Chen, Cairong Zhang

3D hand pose estimation from single depth image is an important and challenging problem for human-computer interaction. Recently deep convolutional networks (ConvNet) with sophisticated design have been employed to address it, but the improvement over traditional random forest based methods is not so apparent. To exploit the good practice and promote the performance for hand pose estimation, we propose a tree-structured Region Ensemble Network (REN) for directly 3D coordinate regression. It first partitions the last convolution outputs of ConvNet into several grid regions. The results from separate fully-connected (FC) regressors on each regions are then integrated by another FC layer to perform the estimation. By exploitation of several training strategies including data augmentation and smooth $L_1$ loss, proposed REN can significantly improve the performance of ConvNet to localize hand joints. The experimental results demonstrate that our approach achieves the best performance among state-of-the-art algorithms on three public hand pose datasets. We also experiment our methods on fingertip detection and human pose datasets and obtain state-of-the-art accuracy.

* Extended version of arXiv:1702.02447 

  Click for Model/Code and Paper
Bi-stream Pose Guided Region Ensemble Network for Fingertip Localization from Stereo Images

Feb 26, 2019
Guijin Wang, Cairong Zhang, Xinghao Chen, Xiangyang Ji, Jing-Hao Xue, Hang Wang

In human-computer interaction, it is important to accurately estimate the hand pose especially fingertips. However, traditional approaches for fingertip localization mainly rely on depth images and thus suffer considerably from the noise and missing values. Instead of depth images, stereo images can also provide 3D information of hands and promote 3D hand pose estimation. There are nevertheless limitations on the dataset size, global viewpoints, hand articulations and hand shapes in the publicly available stereo-based hand pose datasets. To mitigate these limitations and promote further research on hand pose estimation from stereo images, we propose a new large-scale binocular hand pose dataset called THU-Bi-Hand, offering a new perspective for fingertip localization. In the THU-Bi-Hand dataset, there are 447k pairs of stereo images of different hand shapes from 10 subjects with accurate 3D location annotations of the wrist and five fingertips. Captured with minimal restriction on the range of hand motion, the dataset covers large global viewpoint space and hand articulation space. To better present the performance of fingertip localization on THU-Bi-Hand, we propose a novel scheme termed Bi-stream Pose Guided Region Ensemble Network (Bi-Pose-REN). It extracts more representative feature regions around joint points in the feature maps under the guidance of the previously estimated pose. The feature regions are integrated hierarchically according to the topology of hand joints to regress the refined hand pose. Bi-Pose-REN and several existing methods are evaluated on THU-Bi-Hand so that benchmarks are provided for further research. Experimental results show that our new method has achieved the best performance on THU-Bi-Hand.

* Cairong Zhang and Xinghao Chen are equally contributed 

  Click for Model/Code and Paper
Interactive Hand Pose Estimation: Boosting accuracy in localizing extended finger joints

Jul 25, 2018
Cairong Zhang, Guijin Wang, Hengkai Guo, Xinghao Chen, Fei Qiao, Huazhong Yang

Accurate 3D hand pose estimation plays an important role in Human Machine Interaction (HMI). In the reality of HMI, joints in fingers stretching out, especially corresponding fingertips, are much more important than other joints. We propose a novel method to refine stretching-out finger joint locations after obtaining rough hand pose estimation. It first detects which fingers are stretching out, then neighbor pixels of certain joint vote for its new location based on random forests. The algorithm is tested on two public datasets: MSRA15 and ICVL. After the refinement stage of stretching-out fingers, errors of predicted HMI finger joint locations are significantly reduced. Mean error of all fingertips reduces around 5mm (relatively more than 20%). Stretching-out fingertip locations are even more precise, which in MSRA15 reduces 10.51mm (relatively 41.4%).

* Electronic Imaging, Visual Information Processing and Communication IX (2018), pp. 251-1-251-6(6) 
* Original publication available on https://doi.org/10.2352/ISSN.2470-1173.2018.2.VIPC-251 

  Click for Model/Code and Paper
Two-Stream Binocular Network: Accurate Near Field Finger Detection Based On Binocular Images

Apr 26, 2018
Yi Wei, Guijin Wang, Cairong Zhang, Hengkai Guo, Xinghao Chen, Huazhong Yang

Fingertip detection plays an important role in human computer interaction. Previous works transform binocular images into depth images. Then depth-based hand pose estimation methods are used to predict 3D positions of fingertips. Different from previous works, we propose a new framework, named Two-Stream Binocular Network (TSBnet) to detect fingertips from binocular images directly. TSBnet first shares convolutional layers for low level features of right and left images. Then it extracts high level features in two-stream convolutional networks separately. Further, we add a new layer: binocular distance measurement layer to improve performance of our model. To verify our scheme, we build a binocular hand image dataset, containing about 117k pairs of images in training set and 10k pairs of images in test set. Our methods achieve an average error of 10.9mm on our test set, outperforming previous work by 5.9mm (relatively 35.1%).

* Visual Communications and Image Processing (VCIP), 2017 IEEE (2017) 1-4 
* Published in: Visual Communications and Image Processing (VCIP), 2017 IEEE. Original IEEE publication available on https://ieeexplore.ieee.org/abstract/document/8305146/. Dataset available on https://sites.google.com/view/thuhand17 

  Click for Model/Code and Paper
Region Ensemble Network: Improving Convolutional Network for Hand Pose Estimation

May 09, 2017
Hengkai Guo, Guijin Wang, Xinghao Chen, Cairong Zhang, Fei Qiao, Huazhong Yang

Hand pose estimation from monocular depth images is an important and challenging problem for human-computer interaction. Recently deep convolutional networks (ConvNet) with sophisticated design have been employed to address it, but the improvement over traditional methods is not so apparent. To promote the performance of directly 3D coordinate regression, we propose a tree-structured Region Ensemble Network (REN), which partitions the convolution outputs into regions and integrates the results from multiple regressors on each regions. Compared with multi-model ensemble, our model is completely end-to-end training. The experimental results demonstrate that our approach achieves the best performance among state-of-the-arts on two public datasets.

* Accepted to ICIP 2017. Project: https://github.com/guohengkai/region-ensemble-network 

  Click for Model/Code and Paper
Depth-Based 3D Hand Pose Estimation: From Current Achievements to Future Goals

Mar 29, 2018
Shanxin Yuan, Guillermo Garcia-Hernando, Bjorn Stenger, Gyeongsik Moon, Ju Yong Chang, Kyoung Mu Lee, Pavlo Molchanov, Jan Kautz, Sina Honari, Liuhao Ge, Junsong Yuan, Xinghao Chen, Guijin Wang, Fan Yang, Kai Akiyama, Yang Wu, Qingfu Wan, Meysam Madadi, Sergio Escalera, Shile Li, Dongheui Lee, Iason Oikonomidis, Antonis Argyros, Tae-Kyun Kim

In this paper, we strive to answer two questions: What is the current state of 3D hand pose estimation from depth images? And, what are the next challenges that need to be tackled? Following the successful Hands In the Million Challenge (HIM2017), we investigate the top 10 state-of-the-art methods on three tasks: single frame 3D pose estimation, 3D hand tracking, and hand pose estimation during object interaction. We analyze the performance of different CNN structures with regard to hand shape, joint visibility, view point and articulation distributions. Our findings include: (1) isolated 3D hand pose estimation achieves low mean errors (10 mm) in the view point range of [70, 120] degrees, but it is far from being solved for extreme view points; (2) 3D volumetric representations outperform 2D CNNs, better capturing the spatial structure of the depth data; (3) Discriminative methods still generalize poorly to unseen hand shapes; (4) While joint occlusions pose a challenge for most methods, explicit modeling of structure constraints can significantly narrow the gap between errors on visible and occluded joints.


  Click for Model/Code and Paper