Research papers and code for "H. Irshad":
Accurate detection of mitosis plays a critical role in breast cancer histopathology. Manual detection and counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. Multispectral imaging is a recent medical imaging technology, proven successful in increasing the segmentation accuracy in other fields. This study aims at improving the accuracy of mitosis detection by developing a specific solution using multispectral and multifocal imaging of breast cancer histopathological data. We propose to enable clinical routine-compliant quality of mitosis discrimination from other objects. The proposed framework includes comprehensive analysis of spectral bands and z-stack focus planes, detection of expected mitotic regions (candidates) in selected focus planes and spectral bands, computation of multispectral spatial features for each candidate, selection of multispectral spatial features and a study of different state-of-the-art classification methods for candidates classification as mitotic or non mitotic figures. This framework has been evaluated on MITOS multispectral medical dataset and achieved 60% detection rate and 57% F-Measure. Our results indicate that multispectral spatial features have more information for mitosis classification in comparison with white spectral band features, being therefore a very promising exploration area to improve the quality of the diagnosis assistance in histopathology.

Click to Read Paper and Get Code
The International Symposium on Biomedical Imaging (ISBI) held a grand challenge to evaluate computational systems for the automated detection of metastatic breast cancer in whole slide images of sentinel lymph node biopsies. Our team won both competitions in the grand challenge, obtaining an area under the receiver operating curve (AUC) of 0.925 for the task of whole slide image classification and a score of 0.7051 for the tumor localization task. A pathologist independently reviewed the same images, obtaining a whole slide image classification AUC of 0.966 and a tumor localization score of 0.733. Combining our deep learning system's predictions with the human pathologist's diagnoses increased the pathologist's AUC to 0.995, representing an approximately 85 percent reduction in human error rate. These results demonstrate the power of using deep learning to produce significant improvements in the accuracy of pathological diagnoses.

Click to Read Paper and Get Code
The assessment of protein expression in immunohistochemistry (IHC) images provides important diagnostic, prognostic and predictive information for guiding cancer diagnosis and therapy. Manual scoring of IHC images represents a logistical challenge, as the process is labor intensive and time consuming. Since the last decade, computational methods have been developed to enable the application of quantitative methods for the analysis and interpretation of protein expression in IHC images. These methods have not yet replaced manual scoring for the assessment of IHC in the majority of diagnostic laboratories and in many large-scale research studies. An alternative approach is crowdsourcing the quantification of IHC images to an undefined crowd. The aim of this study is to quantify IHC images for labeling of ER status with two different crowdsourcing approaches, image labeling and nuclei labeling, and compare their performance with automated methods. Crowdsourcing-derived scores obtained greater concordance with the pathologist interpretations for both image labeling and nuclei labeling tasks (83% and 87%), as compared to the pathologist concordance achieved by the automated method (81%) on 5,483 TMA images from 1,909 breast cancer patients. This analysis shows that crowdsourcing the scoring of protein expression in IHC images is a promising new approach for large scale cancer molecular pathology studies.

Click to Read Paper and Get Code