Research papers and code for "Han Zhang":
Federated learning performs distributed model training using local data hosted by agents. It shares only model parameter updates for iterative aggregation at the server. Although it is privacy-preserving by design, federated learning is vulnerable to noise corruption of local agents, as demonstrated in the previous study on adversarial data poisoning threat against federated learning systems. Even a single noise-corrupted agent can bias the model training. In our work, we propose a collaborative and privacy-preserving machine teaching paradigm with multiple distributed teachers, to improve robustness of the federated training process against local data corruption. We assume that each local agent (teacher) have the resources to verify a small portions of trusted instances, which may not by itself be adequate for learning. In the proposed collaborative machine teaching method, these trusted instances guide the distributed agents to jointly select a compact while informative training subset from data hosted by their own. Simultaneously, the agents learn to add changes of limited magnitudes into the selected data instances, in order to improve the testing performances of the federally trained model despite of the training data corruption. Experiments on toy and real data demonstrate that our approach can identify training set bugs effectively and suggest appropriate changes to the labels. Our algorithm is a step toward trustworthy machine learning.

Click to Read Paper and Get Code
In this article, we consider the sparse tensor singular value decomposition, which aims for dimension reduction on high-dimensional high-order data with certain sparsity structure. A method named Sparse Tensor Alternating Thresholding for Singular Value Decomposition (STAT-SVD) is proposed. The proposed procedure features a novel double projection \& thresholding scheme, which provides a sharp criterion for thresholding in each iteration. Compared with regular tensor SVD model, STAT-SVD permits more robust estimation under weaker assumptions. Both the upper and lower bounds for estimation accuracy are developed. The proposed procedure is shown to be minimax rate-optimal in a general class of situations. Simulation studies show that STAT-SVD performs well under a variety of configurations. We also illustrate the merits of the proposed procedure on a longitudinal tensor dataset on European country mortality rates.

* 73 pages
Click to Read Paper and Get Code
In this paper we consider the problem of grouped variable selection in high-dimensional regression using $\ell_1-\ell_q$ regularization ($1\leq q \leq \infty$), which can be viewed as a natural generalization of the $\ell_1-\ell_2$ regularization (the group Lasso). The key condition is that the dimensionality $p_n$ can increase much faster than the sample size $n$, i.e. $p_n \gg n$ (in our case $p_n$ is the number of groups), but the number of relevant groups is small. The main conclusion is that many good properties from $\ell_1-$regularization (Lasso) naturally carry on to the $\ell_1-\ell_q$ cases ($1 \leq q \leq \infty$), even if the number of variables within each group also increases with the sample size. With fixed design, we show that the whole family of estimators are both estimation consistent and variable selection consistent under different conditions. We also show the persistency result with random design under a much weaker condition. These results provide a unified treatment for the whole family of estimators ranging from $q=1$ (Lasso) to $q=\infty$ (iCAP), with $q=2$ (group Lasso)as a special case. When there is no group structure available, all the analysis reduces to the current results of the Lasso estimator ($q=1$).

* 25 pages
Click to Read Paper and Get Code
Conventional SLAM algorithms takes a strong assumption of scene motionlessness, which limits the application in real environments. This paper tries to tackle the challenging visual SLAM issue of moving objects in dynamic environments. We present GMC, grid-based motion clustering approach, a lightweight dynamic object filtering method that is free from high-power and expensive processors. GMC encapsulates motion consistency as the statistical likelihood of detected key points within a certain region. Using this method can we provide real-time and robust correspondence algorithm that can differentiate dynamic objects with static backgrounds. We evaluate our system in public TUM dataset. To compare with the state-of-the-art methods, our system can provide more accurate results by detecting dynamic objects.

* 14 pages
Click to Read Paper and Get Code
This paper proposes a method for multi-class classification problems, where the number of classes K is large. The method, referred to as Candidates vs. Noises Estimation (CANE), selects a small subset of candidate classes and samples the remaining classes. We show that CANE is always consistent and computationally efficient. Moreover, the resulting estimator has low statistical variance approaching that of the maximum likelihood estimator, when the observed label belongs to the selected candidates with high probability. In practice, we use a tree structure with leaves as classes to promote fast beam search for candidate selection. We further apply the CANE method to estimate word probabilities in learning large neural language models. Extensive experimental results show that CANE achieves better prediction accuracy over the Noise-Contrastive Estimation (NCE), its variants and a number of the state-of-the-art tree classifiers, while it gains significant speedup compared to standard O(K) methods.

* Published in ICML 2018
Click to Read Paper and Get Code
A new approach for efficiently exploring the configuration space and computing the free energy of large atomic and molecular systems is proposed, motivated by an analogy with reinforcement learning. There are two major components in this new approach. Like metadynamics, it allows for an efficient exploration of the configuration space by adding an adaptively computed biasing potential to the original dynamics. Like deep reinforcement learning, this biasing potential is trained on the fly using deep neural networks, with data collected judiciously from the exploration and an uncertainty indicator from the neural network model playing the role of the reward function. Parameterization using neural networks makes it feasible to handle cases with a large set of collective variables. This has the potential advantage that selecting precisely the right set of collective variables has now become less critical for capturing the structural transformations of the system. The method is illustrated by studying the full-atom, explicit solvent models of alanine dipeptide and tripeptide, as well as the system of a polyalanine-10 molecule with 20 collective variables.

Click to Read Paper and Get Code
Recognizing a previously visited place, also known as place recognition (or loop closure detection) is the key towards fully autonomous mobile robots and self-driving vehicle navigation. Augmented with various Simultaneous Localization and Mapping techniques (SLAM), loop closure detection allows for incremental pose correction and can bolster efficient and accurate map creation. However, repeated and similar scenes (perceptual aliasing) and long term appearance changes (e.g. weather variations) are major challenges for current place recognition algorithms. We introduce a new dataset Multisensory Omnidirectional Long-term Place recognition (MOLP) comprising omnidirectional intensity and disparity images. This dataset presents many of the challenges faced by outdoor mobile robots and current place recognition algorithms. Using MOLP dataset, we formulate the place recognition problem as a regularized sparse convex optimization problem. We conclude that information extracted from intensity image is superior to disparity image in isolating discriminative features for successful long term place recognition. Furthermore, when these discriminative features are extracted from an omnidirectional vision sensor, a robust bidirectional loop closure detection approach is established, allowing mobile robots to close the loop, regardless of the difference in the direction when revisiting a place.

* 15 pages
Click to Read Paper and Get Code
The pathwise coordinate optimization is one of the most important computational frameworks for high dimensional convex and nonconvex sparse learning problems. It differs from the classical coordinate optimization algorithms in three salient features: {\it warm start initialization}, {\it active set updating}, and {\it strong rule for coordinate preselection}. Such a complex algorithmic structure grants superior empirical performance, but also poses significant challenge to theoretical analysis. To tackle this long lasting problem, we develop a new theory showing that these three features play pivotal roles in guaranteeing the outstanding statistical and computational performance of the pathwise coordinate optimization framework. Particularly, we analyze the existing pathwise coordinate optimization algorithms and provide new theoretical insights into them. The obtained insights further motivate the development of several modifications to improve the pathwise coordinate optimization framework, which guarantees linear convergence to a unique sparse local optimum with optimal statistical properties in parameter estimation and support recovery. This is the first result on the computational and statistical guarantees of the pathwise coordinate optimization framework in high dimensions. Thorough numerical experiments are provided to support our theory.

* Accepted by the Annals of Statistics, 2016+
Click to Read Paper and Get Code
Our method for multi-lingual geoparsing uses monolingual tools and resources along with machine translation and alignment to return location words in many languages. Not only does our method save the time and cost of developing geoparsers for each language separately, but also it allows the possibility of a wide range of language capabilities within a single interface. We evaluated our method in our LanguageBridge prototype on location named entities using newswire, broadcast news and telephone conversations in English, Arabic and Chinese data from the Linguistic Data Consortium (LDC). Our results for geoparsing Chinese and Arabic text using our multi-lingual geoparsing method are comparable to our results for geoparsing English text with our English tools. Furthermore, experiments using our machine translation approach results in accuracy comparable to results from the same data that was translated manually.

* 7 pages, 4 figures,
Click to Read Paper and Get Code
We provide theoretical analysis of the statistical and computational properties of penalized $M$-estimators that can be formulated as the solution to a possibly nonconvex optimization problem. Many important estimators fall in this category, including least squares regression with nonconvex regularization, generalized linear models with nonconvex regularization and sparse elliptical random design regression. For these problems, it is intractable to calculate the global solution due to the nonconvex formulation. In this paper, we propose an approximate regularization path-following method for solving a variety of learning problems with nonconvex objective functions. Under a unified analytic framework, we simultaneously provide explicit statistical and computational rates of convergence for any local solution attained by the algorithm. Computationally, our algorithm attains a global geometric rate of convergence for calculating the full regularization path, which is optimal among all first-order algorithms. Unlike most existing methods that only attain geometric rates of convergence for one single regularization parameter, our algorithm calculates the full regularization path with the same iteration complexity. In particular, we provide a refined iteration complexity bound to sharply characterize the performance of each stage along the regularization path. Statistically, we provide sharp sample complexity analysis for all the approximate local solutions along the regularization path. In particular, our analysis improves upon existing results by providing a more refined sample complexity bound as well as an exact support recovery result for the final estimator. These results show that the final estimator attains an oracle statistical property due to the usage of nonconvex penalty.

* Annals of Statistics 2014, Vol. 42, No. 6, 2164-2201
* Published in at http://dx.doi.org/10.1214/14-AOS1238 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Click to Read Paper and Get Code
Automatic mammogram classification and mass segmentation play a critical role in a computer-aided mammogram screening system. In this work, we present a unified mammogram analysis framework for both whole-mammogram classification and segmentation. Our model is designed based on a deep U-Net with residual connections, and equipped with the novel hybrid deep supervision (HDS) scheme for end-to-end multi-task learning. As an extension of deep supervision (DS), HDS not only can force the model to learn more discriminative features like DS, but also seamlessly integrates segmentation and classification tasks into one model, thus the model can benefit from both pixel-wise and image-wise supervisions. We extensively validate the proposed method on the widely-used INbreast dataset. Ablation study corroborates that pixel-wise and image-wise supervisions are mutually beneficial, evidencing the efficacy of HDS. The results of 5-fold cross validation indicate that our unified model matches state-of-the-art performance on both mammogram segmentation and classification tasks, which achieves an average segmentation Dice similarity coefficient (DSC) of 0.85 and a classification accuracy of 0.89. The code is available at https://github.com/angrypudding/hybrid-ds.

Click to Read Paper and Get Code
Blind deconvolution is a ubiquitous problem of recovering two unknown signals from their convolution. Unfortunately, this is an ill-posed problem in general. This paper focuses on the {\em short and sparse} blind deconvolution problem, where the one unknown signal is short and the other one is sparsely and randomly supported. This variant captures the structure of the unknown signals in several important applications. We assume the short signal to have unit $\ell^2$ norm and cast the blind deconvolution problem as a nonconvex optimization problem over the sphere. We demonstrate that (i) in a certain region of the sphere, every local optimum is close to some shift truncation of the ground truth, and (ii) for a generic short signal of length $k$, when the sparsity of activation signal $\theta\lesssim k^{-2/3}$ and number of measurements $m\gtrsim poly(k)$, a simple initialization method together with a descent algorithm which escapes strict saddle points recovers a near shift truncation of the ground truth kernel.

* 66 pages, 6 figures
Click to Read Paper and Get Code
There has been an increasing interest in testing the equality of large Pearson's correlation matrices. However, in many applications it is more important to test the equality of large rank-based correlation matrices since they are more robust to outliers and nonlinearity. Unlike the Pearson's case, testing the equality of large rank-based statistics has not been well explored and requires us to develop new methods and theory. In this paper, we provide a framework for testing the equality of two large U-statistic based correlation matrices, which include the rank-based correlation matrices as special cases. Our approach exploits extreme value statistics and the Jackknife estimator for uncertainty assessment and is valid under a fully nonparametric model. Theoretically, we develop a theory for testing the equality of U-statistic based correlation matrices. We then apply this theory to study the problem of testing large Kendall's tau correlation matrices and demonstrate its optimality. For proving this optimality, a novel construction of least favourable distributions is developed for the correlation matrix comparison.

* to appear in Bernoulli
Click to Read Paper and Get Code
Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model.

Click to Read Paper and Get Code
Apprenticeship learning has recently attracted a wide attention due to its capability of allowing robots to learn physical tasks directly from demonstrations provided by human experts. Most previous techniques assumed that the state space is known a priori or employed simple state representations that usually suffer from perceptual aliasing. Different from previous research, we propose a novel approach named Sequence-based Multimodal Apprenticeship Learning (SMAL), which is capable to simultaneously fusing temporal information and multimodal data, and to integrate robot perception with decision making. To evaluate the SMAL approach, experiments are performed using both simulations and real-world robots in the challenging search and rescue scenarios. The empirical study has validated that our SMAL approach can effectively learn plans for robots to make decisions using sequence of multimodal observations. Experimental results have also showed that SMAL outperforms the baseline methods using individual images.

* 8 pages, 6 figures, accepted by ICRA'17
Click to Read Paper and Get Code
The convolution layer has been the dominant feature extractor in computer vision for years. However, the spatial aggregation in convolution is basically a pattern matching process that applies fixed filters which are inefficient at modeling visual elements with varying spatial distributions. This paper presents a new image feature extractor, called the local relation layer, that adaptively determines aggregation weights based on the compositional relationship of local pixel pairs. With this relational approach, it can composite visual elements into higher-level entities in a more efficient manner that benefits semantic inference. A network built with local relation layers, called the Local Relation Network (LR-Net), is found to provide greater modeling capacity than its counterpart built with regular convolution on large-scale recognition tasks such as ImageNet classification.

Click to Read Paper and Get Code
Recent progress in multiple object tracking (MOT) has shown that a robust similarity score is key to the success of trackers. A good similarity score is expected to reflect multiple cues, e.g. appearance, location, and topology, over a long period of time. However, these cues are heterogeneous, making them hard to be combined in a unified network. As a result, existing methods usually encode them in separate networks or require a complex training approach. In this paper, we present a unified framework for similarity measurement which could simultaneously encode various cues and perform reasoning across both spatial and temporal domains. We also study the feature representation of a tracklet-object pair in depth, showing a proper design of the pair features can well empower the trackers. The resulting approach is named spatial-temporal relation networks (STRN). It runs in a feed-forward way and can be trained in an end-to-end manner. The state-of-the-art accuracy was achieved on all of the MOT15-17 benchmarks using public detection and online settings.

Click to Read Paper and Get Code
We present a novel problem setting in zero-shot learning, zero-shot object recognition and detection in the context. Contrary to the traditional zero-shot learning methods, which simply infers unseen categories by transferring knowledge from the objects belonging to semantically similar seen categories, we aim to understand the identity of the novel objects in an image surrounded by the known objects using the inter-object relation prior. Specifically, we leverage the visual context and the geometric relationships between all pairs of objects in a single image, and capture the information useful to infer unseen categories. We integrate our context-aware zero-shot learning framework into the traditional zero-shot learning techniques seamlessly using a Conditional Random Field (CRF). The proposed algorithm is evaluated on both zero-shot region classification and zero-shot detection tasks. The results on Visual Genome (VG) dataset show that our model significantly boosts performance with the additional visual context compared to traditional methods.

Click to Read Paper and Get Code
How to learn a discriminative fine-grained representation is a key point in many computer vision applications, such as person re-identification, fine-grained classification, fine-grained image retrieval, etc. Most of the previous methods focus on learning metrics or ensemble to derive better global representation, which are usually lack of local information. Based on the considerations above, we propose a novel Attribute-Aware Attention Model ($A^3M$), which can learn local attribute representation and global category representation simultaneously in an end-to-end manner. The proposed model contains two attention models: attribute-guided attention module uses attribute information to help select category features in different regions, at the same time, category-guided attention module selects local features of different attributes with the help of category cues. Through this attribute-category reciprocal process, local and global features benefit from each other. Finally, the resulting feature contains more intrinsic information for image recognition instead of the noisy and irrelevant features. Extensive experiments conducted on Market-1501, CompCars, CUB-200-2011 and CARS196 demonstrate the effectiveness of our $A^3M$.

* Accepted by ACM Multimedia 2018 (Oral)
Click to Read Paper and Get Code
Hierarchical text classification, which aims to classify text documents into a given hierarchy, is an important task in many real-world applications. Recently, deep neural models are gaining increasing popularity for text classification due to their expressive power and minimum requirement for feature engineering. However, applying deep neural networks for hierarchical text classification remains challenging, because they heavily rely on a large amount of training data and meanwhile cannot easily determine appropriate levels of documents in the hierarchical setting. In this paper, we propose a weakly-supervised neural method for hierarchical text classification. Our method does not require a large amount of training data but requires only easy-to-provide weak supervision signals such as a few class-related documents or keywords. Our method effectively leverages such weak supervision signals to generate pseudo documents for model pre-training, and then performs self-training on real unlabeled data to iteratively refine the model. During the training process, our model features a hierarchical neural structure, which mimics the given hierarchy and is capable of determining the proper levels for documents with a blocking mechanism. Experiments on three datasets from different domains demonstrate the efficacy of our method compared with a comprehensive set of baselines.

* AAAI 2019
Click to Read Paper and Get Code