In recent years, kernel density estimation has been exploited by computer scientists to model machine learning problems. The kernel density estimation based approaches are of interest due to the low time complexity of either O(n) or O(n*log(n)) for constructing a classifier, where n is the number of sampling instances. Concerning design of kernel density estimators, one essential issue is how fast the pointwise mean square error (MSE) and/or the integrated mean square error (IMSE) diminish as the number of sampling instances increases. In this article, it is shown that with the proposed kernel function it is feasible to make the pointwise MSE of the density estimator converge at O(n^-2/3) regardless of the dimension of the vector space, provided that the probability density function at the point of interest meets certain conditions. Click to Read Paper
Due to the lack of information such as the space environment condition and resident space objects' (RSOs') body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs' trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: 1) the ML model can be used to improve the same RSO's orbit information that is not available during the learning process but shares the same time interval as the training data; 2) the ML model can be used to improve predictions of the same RSO at future epochs; and 3) the ML model based on a RSO can be applied to other RSOs that share some common features. Click to Read Paper
Gaussian processes (GPs) provide a nonparametric representation of functions. However, classical GP inference suffers from high computational cost for big data. In this paper, we propose a new Bayesian approach, EigenGP, that learns both basis dictionary elements--eigenfunctions of a GP prior--and prior precisions in a sparse finite model. It is well known that, among all orthogonal basis functions, eigenfunctions can provide the most compact representation. Unlike other sparse Bayesian finite models where the basis function has a fixed form, our eigenfunctions live in a reproducing kernel Hilbert space as a finite linear combination of kernel functions. We learn the dictionary elements--eigenfunctions--and the prior precisions over these elements as well as all the other hyperparameters from data by maximizing the model marginal likelihood. We explore computational linear algebra to simplify the gradient computation significantly. Our experimental results demonstrate improved predictive performance of EigenGP over alternative sparse GP methods as well as relevance vector machine. Click to Read Paper
We introduce the structured projection of intermediate gradients optimization technique (SPIGOT), a new method for backpropagating through neural networks that include hard-decision structured predictions (e.g., parsing) in intermediate layers. SPIGOT requires no marginal inference, unlike structured attention networks (Kim et al., 2017) and some reinforcement learning-inspired solutions (Yogatama et al., 2017). Like so-called straight-through estimators (Hinton, 2012), SPIGOT defines gradient-like quantities associated with intermediate nondifferentiable operations, allowing backpropagation before and after them; SPIGOT's proxy aims to ensure that, after a parameter update, the intermediate structure will remain well-formed. We experiment on two structured NLP pipelines: syntactic-then-semantic dependency parsing, and semantic parsing followed by sentiment classification. We show that training with SPIGOT leads to a larger improvement on the downstream task than a modularly-trained pipeline, the straight-through estimator, and structured attention, reaching a new state of the art on semantic dependency parsing. Click to Read Paper
Political speeches and debates play an important role in shaping the images of politicians, and the public often relies on media outlets to select bits of political communication from a large pool of utterances. It is an important research question to understand what factors impact this selection process. To quantitatively explore the selection process, we build a three- decade dataset of presidential debate transcripts and post-debate coverage. We first examine the effect of wording and propose a binary classification framework that controls for both the speaker and the debate situation. We find that crowdworkers can only achieve an accuracy of 60% in this task, indicating that media choices are not entirely obvious. Our classifiers outperform crowdworkers on average, mainly in primary debates. We also compare important factors from crowdworkers' free-form explanations with those from data-driven methods and find interesting differences. Few crowdworkers mentioned that "context matters", whereas our data show that well-quoted sentences are more distinct from the previous utterance by the same speaker than less-quoted sentences. Finally, we examine the aggregate effect of media preferences towards different wordings to understand the extent of fragmentation among media outlets. By analyzing a bipartite graph built from quoting behavior in our data, we observe a decreasing trend in bipartisan coverage. Click to Read Paper
Gaussian processes (GPs) are powerful non-parametric function estimators. However, their applications are largely limited by the expensive computational cost of the inference procedures. Existing stochastic or distributed synchronous variational inferences, although have alleviated this issue by scaling up GPs to millions of samples, are still far from satisfactory for real-world large applications, where the data sizes are often orders of magnitudes larger, say, billions. To solve this problem, we propose ADVGP, the first Asynchronous Distributed Variational Gaussian Process inference for regression, on the recent large-scale machine learning platform, PARAMETERSERVER. ADVGP uses a novel, flexible variational framework based on a weight space augmentation, and implements the highly efficient, asynchronous proximal gradient optimization. While maintaining comparable or better predictive performance, ADVGP greatly improves upon the efficiency of the existing variational methods. With ADVGP, we effortlessly scale up GP regression to a real-world application with billions of samples and demonstrate an excellent, superior prediction accuracy to the popular linear models. Click to Read Paper
We present a deep neural architecture that parses sentences into three semantic dependency graph formalisms. By using efficient, nearly arc-factored inference and a bidirectional-LSTM composed with a multi-layer perceptron, our base system is able to significantly improve the state of the art for semantic dependency parsing, without using hand-engineered features or syntax. We then explore two multitask learning approaches---one that shares parameters across formalisms, and one that uses higher-order structures to predict the graphs jointly. We find that both approaches improve performance across formalisms on average, achieving a new state of the art. Our code is open-source and available at https://github.com/Noahs-ARK/NeurboParser. Click to Read Paper
Attention mechanisms in neural networks have proved useful for problems in which the input and output do not have fixed dimension. Often there exist features that are locally translation invariant and would be valuable for directing the model's attention, but previous attentional architectures are not constructed to learn such features specifically. We introduce an attentional neural network that employs convolution on the input tokens to detect local time-invariant and long-range topical attention features in a context-dependent way. We apply this architecture to the problem of extreme summarization of source code snippets into short, descriptive function name-like summaries. Using those features, the model sequentially generates a summary by marginalizing over two attention mechanisms: one that predicts the next summary token based on the attention weights of the input tokens and another that is able to copy a code token as-is directly into the summary. We demonstrate our convolutional attention neural network's performance on 10 popular Java projects showing that it achieves better performance compared to previous attentional mechanisms. Click to Read Paper
Despite the tremendous empirical success of neural models in natural language processing, many of them lack the strong intuitions that accompany classical machine learning approaches. Recently, connections have been shown between convolutional neural networks (CNNs) and weighted finite state automata (WFSAs), leading to new interpretations and insights. In this work, we show that some recurrent neural networks also share this connection to WFSAs. We characterize this connection formally, defining rational recurrences to be recurrent hidden state update functions that can be written as the Forward calculation of a finite set of WFSAs. We show that several recent neural models use rational recurrences. Our analysis provides a fresh view of these models and facilitates devising new neural architectures that draw inspiration from WFSAs. We present one such model, which performs better than two recent baselines on language modeling and text classification. Our results demonstrate that transferring intuitions from classical models like WFSAs can be an effective approach to designing and understanding neural models. Click to Read Paper
Extracting temporal relations (before, after, overlapping, etc.) is a key aspect of understanding events described in natural language. We argue that this task would gain from the availability of a resource that provides prior knowledge in the form of the temporal order that events usually follow. This paper develops such a resource -- a probabilistic knowledge base acquired in the news domain -- by extracting temporal relations between events from the New York Times (NYT) articles over a 20-year span (1987--2007). We show that existing temporal extraction systems can be improved via this resource. As a byproduct, we also show that interesting statistics can be retrieved from this resource, which can potentially benefit other time-aware tasks. The proposed system and resource are both publicly available. Click to Read Paper
We present a new approach to learning semantic parsers from multiple datasets, even when the target semantic formalisms are drastically different, and the underlying corpora do not overlap. We handle such "disjoint" data by treating annotations for unobserved formalisms as latent structured variables. Building on state-of-the-art baselines, we show improvements both in frame-semantic parsing and semantic dependency parsing by modeling them jointly. Click to Read Paper
We study how to synthesize novel views of human body from a single image. Though recent deep learning based methods work well for rigid objects, they often fail on objects with large articulation, like human bodies. The core step of existing methods is to fit a map from the observable views to novel views by CNNs; however, the rich articulation modes of human body make it rather challenging for CNNs to memorize and interpolate the data well. To address the problem, we propose a novel deep learning based pipeline that explicitly estimates and leverages the geometry of the underlying human body. Our new pipeline is a composition of a shape estimation network and an image generation network, and at the interface a perspective transformation is applied to generate a forward flow for pixel value transportation. Our design is able to factor out the space of data variation and makes learning at each step much easier. Empirically, we show that the performance for pose-varying objects can be improved dramatically. Our method can also be applied on real data captured by 3D sensors, and the flow generated by our methods can be used for generating high quality results in higher resolution. Click to Read Paper
Compact neural networks are inclined to exploit "sparsely-connected" convolutions such as depthwise convolution and group convolution for employment in mobile applications. Compared with standard "fully-connected" convolutions, these convolutions are more computationally economical. However, "sparsely-connected" convolutions block the inter-group information exchange, which induces severe performance degradation. To address this issue, we present two novel operations named merging and evolution to leverage the inter-group information. Our key idea is encoding the inter-group information with a narrow feature map, then combining the generated features with the original network for better representation. Taking advantage of the proposed operations, we then introduce the Merging-and-Evolution (ME) module, an architectural unit specifically designed for compact networks. Finally, we propose a family of compact neural networks called MENet based on ME modules. Extensive experiments on ILSVRC 2012 dataset and PASCAL VOC 2007 dataset demonstrate that MENet consistently outperforms other state-of-the-art compact networks under different computational budgets. For instance, under the computational budget of 140 MFLOPs, MENet surpasses ShuffleNet by 1% and MobileNet by 1.95% on ILSVRC 2012 top-1 accuracy, while by 2.3% and 4.1% on PASCAL VOC 2007 mAP, respectively. Click to Read Paper
Many real-world problems can be represented as graph-based learning problems. In this paper, we propose a novel framework for learning spatial and attentional convolution neural networks on arbitrary graphs. Different from previous convolutional neural networks on graphs, we first design a motif-matching guided subgraph normalization method to capture neighborhood information. Then we implement self-attentional layers to learn different importances from different subgraphs to solve graph classification problems. Analogous to image-based attentional convolution networks that operate on locally connected and weighted regions of the input, we also extend graph normalization from one-dimensional node sequence to two-dimensional node grid by leveraging motif-matching, and design self-attentional layers without requiring any kinds of cost depending on prior knowledge of the graph structure. Our results on both bioinformatics and social network datasets show that we can significantly improve graph classification benchmarks over traditional graph kernel and existing deep models. Click to Read Paper
We propose a novel method to accelerate Lloyd's algorithm for K-Means clustering. Unlike previous acceleration approaches that reduce computational cost per iterations or improve initialization, our approach is focused on reducing the number of iterations required for convergence. This is achieved by treating the assignment step and the update step of Lloyd's algorithm as a fixed-point iteration, and applying Anderson acceleration, a well-established technique for accelerating fixed-point solvers. Classical Anderson acceleration utilizes m previous iterates to find an accelerated iterate, and its performance on K-Means clustering can be sensitive to choice of m and the distribution of samples. We propose a new strategy to dynamically adjust the value of m, which achieves robust and consistent speedups across different problem instances. Our method complements existing acceleration techniques, and can be combined with them to achieve state-of-the-art performance. We perform extensive experiments to evaluate the performance of the proposed method, where it outperforms other algorithms in 106 out of 120 test cases, and the mean decrease ratio of computational time is more than 33%. Click to Read Paper
Sensor-based activity recognition seeks the profound high-level knowledge about human activities from multitudes of low-level sensor readings. Conventional pattern recognition approaches have made tremendous progress in the past years. However, those methods often heavily rely on heuristic hand-crafted feature extraction, which could hinder their generalization performance. Additionally, existing methods are undermined for unsupervised and incremental learning tasks. Recently, the recent advancement of deep learning makes it possible to perform automatic high-level feature extraction thus achieves promising performance in many areas. Since then, deep learning based methods have been widely adopted for the sensor-based activity recognition tasks. This paper surveys the recent advance of deep learning based sensor-based activity recognition. We summarize existing literature from three aspects: sensor modality, deep model, and application. We also present detailed insights on existing work and propose grand challenges for future research. Click to Read Paper
Policy gradient methods have achieved remarkable successes in solving challenging reinforcement learning problems. However, it still often suffers from the large variance issue on policy gradient estimation, which leads to poor sample efficiency during training. In this work, we propose a control variate method to effectively reduce variance for policy gradient methods. Motivated by the Stein's identity, our method extends the previous control variate methods used in REINFORCE and advantage actor-critic by introducing more general action-dependent baseline functions. Empirical studies show that our method significantly improves the sample efficiency of the state-of-the-art policy gradient approaches. Click to Read Paper
We combine generative adversarial network (GAN) with light microscopy to achieve deep learning super-resolution under a large field of view (FOV). By appropriately adopting prior microscopy data in an adversarial training, the neural network can recover a high-resolution, accurate image of new specimen from its single low-resolution measurement. Its capacity has been broadly demonstrated via imaging various types of samples, such as USAF resolution target, human pathological slides, fluorescence-labelled fibroblast cells, and deep tissues in transgenic mouse brain, by both wide-field and light-sheet microscopes. The gigapixel, multi-color reconstruction of these samples verifies a successful GAN-based single image super-resolution procedure. We also propose an image degrading model to generate low resolution images for training, making our approach free from the complex image registration during training dataset preparation. After a welltrained network being created, this deep learning-based imaging approach is capable of recovering a large FOV (~95 mm2), high-resolution (~1.7 {\mu}m) image at high speed (within 1 second), while not necessarily introducing any changes to the setup of existing microscopes. Click to Read Paper
Image translation between two domains is a class of problems aiming to learn mapping from an input image in the source domain to an output image in the target domain. It has been applied to numerous domains, such as data augmentation, domain adaptation, and unsupervised training. When paired training data is not accessible, image translation becomes an ill-posed problem. We constrain the problem with the assumption that the translated image needs to be perceptually similar to the original image and also appears to be drawn from the new domain, and propose a simple yet effective image translation model consisting of a single generator trained with a self-regularization term and an adversarial term. We further notice that existing image translation techniques are agnostic to the subjects of interest and often introduce unwanted changes or artifacts to the input. Thus we propose to add an attention module to predict an attention map to guide the image translation process. The module learns to attend to key parts of the image while keeping everything else unaltered, essentially avoiding undesired artifacts or changes. The predicted attention map also opens door to applications such as unsupervised segmentation and saliency detection. Extensive experiments and evaluations show that our model while being simpler, achieves significantly better performance than existing image translation methods. Click to Read Paper
Joint extraction of entities and relations is an important task in information extraction. To tackle this problem, we firstly propose a novel tagging scheme that can convert the joint extraction task to a tagging problem. Then, based on our tagging scheme, we study different end-to-end models to extract entities and their relations directly, without identifying entities and relations separately. We conduct experiments on a public dataset produced by distant supervision method and the experimental results show that the tagging based methods are better than most of the existing pipelined and joint learning methods. What's more, the end-to-end model proposed in this paper, achieves the best results on the public dataset. Click to Read Paper