Models, code, and papers for "Hao Song":

Distributive Dynamic Spectrum Access through Deep Reinforcement Learning: A Reservoir Computing Based Approach

Oct 28, 2018
Hao-Hsuan Chang, Hao Song, Yang Yi, Jianzhong Zhang, Haibo He, Lingjia Liu

Dynamic spectrum access (DSA) is regarded as an effective and efficient technology to share radio spectrum among different networks. As a secondary user (SU), a DSA device will face two critical problems: avoiding causing harmful interference to primary users (PUs), and conducting effective interference coordination with other secondary users. These two problems become even more challenging for a distributed DSA network where there is no centralized controllers for SUs. In this paper, we investigate communication strategies of a distributive DSA network under the presence of spectrum sensing errors. To be specific, we apply the powerful machine learning tool, deep reinforcement learning (DRL), for SUs to learn "appropriate" spectrum access strategies in a distributed fashion assuming NO knowledge of the underlying system statistics. Furthermore, a special type of recurrent neural network (RNN), called the reservoir computing (RC), is utilized to realize DRL by taking advantage of the underlying temporal correlation of the DSA network. Using the introduced machine learning-based strategy, SUs could make spectrum access decisions distributedly relying only on their own current and past spectrum sensing outcomes. Through extensive experiments, our results suggest that the RC-based spectrum access strategy can help the SU to significantly reduce the chances of collision with PUs and other SUs. We also show that our scheme outperforms the myopic method which assumes the knowledge of system statistics, and converges faster than the Q-learning method when the number of channels is large.

* This work is accepted in IEEE IoT Journal 2018 

  Click for Model/Code and Paper
Image Segmentation Algorithms Overview

Jul 07, 2017
Song Yuheng, Yan Hao

The technology of image segmentation is widely used in medical image processing, face recognition pedestrian detection, etc. The current image segmentation techniques include region-based segmentation, edge detection segmentation, segmentation based on clustering, segmentation based on weakly-supervised learning in CNN, etc. This paper analyzes and summarizes these algorithms of image segmentation, and compares the advantages and disadvantages of different algorithms. Finally, we make a prediction of the development trend of image segmentation with the combination of these algorithms.

  Click for Model/Code and Paper
Non-Parametric Calibration of Probabilistic Regression

Jun 20, 2018
Hao Song, Meelis Kull, Peter Flach

The task of calibration is to retrospectively adjust the outputs from a machine learning model to provide better probability estimates on the target variable. While calibration has been investigated thoroughly in classification, it has not yet been well-established for regression tasks. This paper considers the problem of calibrating a probabilistic regression model to improve the estimated probability densities over the real-valued targets. We propose to calibrate a regression model through the cumulative probability density, which can be derived from calibrating a multi-class classifier. We provide three non-parametric approaches to solve the problem, two of which provide empirical estimates and the third providing smooth density estimates. The proposed approaches are experimentally evaluated to show their ability to improve the performance of regression models on the predictive likelihood.

  Click for Model/Code and Paper
Distribution Calibration for Regression

May 15, 2019
Hao Song, Tom Diethe, Meelis Kull, Peter Flach

We are concerned with obtaining well-calibrated output distributions from regression models. Such distributions allow us to quantify the uncertainty that the model has regarding the predicted target value. We introduce the novel concept of distribution calibration, and demonstrate its advantages over the existing definition of quantile calibration. We further propose a post-hoc approach to improving the predictions from previously trained regression models, using multi-output Gaussian Processes with a novel Beta link function. The proposed method is experimentally verified on a set of common regression models and shows improvements for both distribution-level and quantile-level calibration.

* ICML 2019, 10 pages 

  Click for Model/Code and Paper
Subjective Knowledge Acquisition and Enrichment Powered By Crowdsourcing

May 16, 2017
Rui Meng, Hao Xin, Lei Chen, Yangqiu Song

Knowledge bases (KBs) have attracted increasing attention due to its great success in various areas, such as Web and mobile search.Existing KBs are restricted to objective factual knowledge, such as city population or fruit shape, whereas,subjective knowledge, such as big city, which is commonly mentioned in Web and mobile queries, has been neglected. Subjective knowledge differs from objective knowledge in that it has no documented or observed ground truth. Instead, the truth relies on people's dominant opinion. Thus, we can use the crowdsourcing technique to get opinion from the crowd. In our work, we propose a system, called crowdsourced subjective knowledge acquisition (CoSKA),for subjective knowledge acquisition powered by crowdsourcing and existing KBs. The acquired knowledge can be used to enrich existing KBs in the subjective dimension which bridges the gap between existing objective knowledge and subjective queries.The main challenge of CoSKA is the conflict between large scale knowledge facts and limited crowdsourcing resource. To address this challenge, in this work, we define knowledge inference rules and then select the seed knowledge judiciously for crowdsourcing to maximize the inference power under the resource constraint. Our experimental results on real knowledge base and crowdsourcing platform verify the effectiveness of CoSKA system.

  Click for Model/Code and Paper
NODE: Extreme Low Light Raw Image Denoising using a Noise Decomposition Network

Sep 11, 2019
Hao Guan, Liu Liu, Sean Moran, Fenglong Song, Gregory Slabaugh

Denoising extreme low light images is a challenging task due to the high noise level. When the illumination is low, digital cameras increase the ISO (electronic gain) to amplify the brightness of captured data. However, this in turn amplifies the noise, arising from read, shot, and defective pixel sources. In the raw domain, read and shot noise are effectively modelled using Gaussian and Poisson distributions respectively, whereas defective pixels can be modeled with impulsive noise. In extreme low light imaging, noise removal becomes a critical challenge to produce a high quality, detailed image with low noise. In this paper, we propose a multi-task deep neural network called Noise Decomposition (NODE) that explicitly and separately estimates defective pixel noise, in conjunction with Gaussian and Poisson noise, to denoise an extreme low light image. Our network is purposely designed to work with raw data, for which the noise is more easily modeled before going through non-linear transformations in the image signal processing (ISP) pipeline. Quantitative and qualitative evaluation show the proposed method to be more effective at denoising real raw images than state-of-the-art techniques.

  Click for Model/Code and Paper
Mining a Deep And-OR Object Semantics from Web Images via Cost-Sensitive Question-Answer-Based Active Annotations

Oct 02, 2018
Quanshi Zhang, Ying Nian Wu, Hao Zhang, Song-Chun Zhu

This paper presents a cost-sensitive active Question-Answering (QA) framework for learning a nine-layer And-Or graph (AOG) from web images. The AOG explicitly represents object categories, poses/viewpoints, parts, and detailed structures within the parts in a compositional hierarchy. The QA framework is designed to minimize an overall risk, which trades off the loss and query costs. The loss is defined for nodes in all layers of the AOG, including the generative loss (measuring the likelihood of the images) and the discriminative loss (measuring the fitness to human answers). The cost comprises both the human labor of answering questions and the computational cost of model learning. The cost-sensitive QA framework iteratively selects different storylines of questions to update different nodes in the AOG. Experiments showed that our method required much less human supervision (e.g., labeling parts on 3--10 training objects for each category) and achieved better performance than baseline methods.

  Click for Model/Code and Paper
HeteSpaceyWalk: A Heterogeneous Spacey Random Walk for Heterogeneous Information Network Embedding

Sep 07, 2019
Yu He, Yangqiu Song, Jianxin Li, Cheng Ji, Jian Peng, Hao Peng

Heterogeneous information network (HIN) embedding has gained increasing interests recently. However, the current way of random-walk based HIN embedding methods have paid few attention to the higher-order Markov chain nature of meta-path guided random walks, especially to the stationarity issue. In this paper, we systematically formalize the meta-path guided random walk as a higher-order Markov chain process, and present a heterogeneous personalized spacey random walk to efficiently and effectively attain the expected stationary distribution among nodes. Then we propose a generalized scalable framework to leverage the heterogeneous personalized spacey random walk to learn embeddings for multiple types of nodes in an HIN guided by a meta-path, a meta-graph, and a meta-schema respectively. We conduct extensive experiments in several heterogeneous networks and demonstrate that our methods substantially outperform the existing state-of-the-art network embedding algorithms.

* CIKM 2019 

  Click for Model/Code and Paper
Object Detection with Mask-based Feature Encoding

Feb 12, 2018
Xiaochuan Fan, Hao Guo, Kang Zheng, Wei Feng, Song Wang

Region-based Convolutional Neural Networks (R-CNNs) have achieved great success in the field of object detection. The existing R-CNNs usually divide a Region-of-Interest (ROI) into grids, and then localize objects by utilizing the spatial information reflected by the relative position of each grid in the ROI. In this paper, we propose a novel feature-encoding approach, where spatial information is represented through the spatial distributions of visual patterns. In particular, we design a Mask Weight Network (MWN) to learn a set of masks and then apply channel-wise masking operations to ROI feature map, followed by a global pooling and a cheap fully-connected layer. We integrate the newly designed feature encoder into the Faster R-CNN architecture. The resulting new Faster R-CNNs can preserve the object-detection accuracy of the standard Faster R-CNNs by using substantially fewer parameters. Compared to R-FCNs using state-of-art PS ROI pooling and deformable PS ROI pooling, the new Faster R-CNNs can produce higher object-detection accuracy with good run-time efficiency. We also show that a specifically designed and learned MWN can capture global contextual information and further improve the object-detection accuracy. Validation experiments are conducted on both PASCAL VOC and MS COCO datasets.

* 8 pages 

  Click for Model/Code and Paper
S4G: Amodal Single-view Single-Shot SE(3) Grasp Detection in Cluttered Scenes

Oct 31, 2019
Yuzhe Qin, Rui Chen, Hao Zhu, Meng Song, Jing Xu, Hao Su

Grasping is among the most fundamental and long-lasting problems in robotics study. This paper studies the problem of 6-DoF(degree of freedom) grasping by a parallel gripper in a cluttered scene captured using a commodity depth sensor from a single viewpoint. We address the problem in a learning-based framework. At the high level, we rely on a single-shot grasp proposal network, trained with synthetic data and tested in real-world scenarios. Our single-shot neural network architecture can predict amodal grasp proposal efficiently and effectively. Our training data synthesis pipeline can generate scenes of complex object configuration and leverage an innovative gripper contact model to create dense and high-quality grasp annotations. Experiments in synthetic and real environments have demonstrated that the proposed approach can outperform state-of-the-arts by a large margin.

* Accepted at the Conference on Robot Learning (CoRL) 2019. Project webpage is available here: 

  Click for Model/Code and Paper
Unsupervised Paraphrasing by Simulated Annealing

Sep 10, 2019
Xianggen Liu, Lili Mou, Fandong Meng, Hao Zhou, Jie Zhou, Sen Song

Unsupervised paraphrase generation is a promising and important research topic in natural language processing. We propose UPSA, a novel approach that accomplishes Unsupervised Paraphrasing by Simulated Annealing. We model paraphrase generation as an optimization problem and propose a sophisticated objective function, involving semantic similarity, expression diversity, and language fluency of paraphrases. Then, UPSA searches the sentence space towards this objective by performing a sequence of local editing. Our method is unsupervised and does not require parallel corpora for training, so it could be easily applied to different domains. We evaluate our approach on a variety of benchmark datasets, namely, Quora, Wikianswers, MSCOCO, and Twitter. Extensive results show that UPSA achieves the state-of-the-art performance compared with previous unsupervised methods in terms of both automatic and human evaluations. Further, our approach outperforms most existing domain-adapted supervised models, showing the generalizability of UPSA.

  Click for Model/Code and Paper
Stingray Detection of Aerial Images Using Augmented Training Images Generated by A Conditional Generative Model

Jun 25, 2018
Yi-Min Chou, Chien-Hung Chen, Keng-Hao Liu, Chu-Song Chen

In this paper, we present an object detection method that tackles the stingray detection problem based on aerial images. In this problem, the images are aerially captured on a sea-surface area by using an Unmanned Aerial Vehicle (UAV), and the stingrays swimming under (but close to) the sea surface are the target we want to detect and locate. To this end, we use a deep object detection method, faster RCNN, to train a stingray detector based on a limited training set of images. To boost the performance, we develop a new generative approach, conditional GLO, to increase the training samples of stingray, which is an extension of the Generative Latent Optimization (GLO) approach. Unlike traditional data augmentation methods that generate new data only for image classification, our proposed method that mixes foreground and background together can generate new data for an object detection task, and thus improve the training efficacy of a CNN detector. Experimental results show that satisfiable performance can be obtained by using our approach on stingray detection in aerial images.

* to appear in CVPR 2018 Workshop (CVPR 2018 Workshop and Challenge: Automated Analysis of Marine Video for Environmental Monitoring) 

  Click for Model/Code and Paper
Robust and Precise Vehicle Localization based on Multi-sensor Fusion in Diverse City Scenes

Nov 15, 2017
Guowei Wan, Xiaolong Yang, Renlan Cai, Hao Li, Hao Wang, Shiyu Song

We present a robust and precise localization system that achieves centimeter-level localization accuracy in disparate city scenes. Our system adaptively uses information from complementary sensors such as GNSS, LiDAR, and IMU to achieve high localization accuracy and resilience in challenging scenes, such as urban downtown, highways, and tunnels. Rather than relying only on LiDAR intensity or 3D geometry, we make innovative use of LiDAR intensity and altitude cues to significantly improve localization system accuracy and robustness. Our GNSS RTK module utilizes the help of the multi-sensor fusion framework and achieves a better ambiguity resolution success rate. An error-state Kalman filter is applied to fuse the localization measurements from different sources with novel uncertainty estimation. We validate, in detail, the effectiveness of our approaches, achieving 5-10cm RMS accuracy and outperforming previous state-of-the-art systems. Importantly, our system, while deployed in a large autonomous driving fleet, made our vehicles fully autonomous in crowded city streets despite road construction that occurred from time to time. A dataset including more than 60 km real traffic driving in various urban roads is used to comprehensively test our system.

* 8 pages, 6 figures, 2 tables 

  Click for Model/Code and Paper
Explainable Knowledge Graph-based Recommendation via Deep Reinforcement Learning

Jun 22, 2019
Weiping Song, Zhijian Duan, Ziqing Yang, Hao Zhu, Ming Zhang, Jian Tang

This paper studies recommender systems with knowledge graphs, which can effectively address the problems of data sparsity and cold start. Recently, a variety of methods have been developed for this problem, which generally try to learn effective representations of users and items and then match items to users according to their representations. Though these methods have been shown quite effective, they lack good explanations, which are critical to recommender systems. In this paper, we take a different path and propose generating recommendations by finding meaningful paths from users to items. Specifically, we formulate the problem as a sequential decision process, where the target user is defined as the initial state, and the walks on the graphs are defined as actions. We shape the rewards according to existing state-of-the-art methods and then train a policy function with policy gradient methods. Experimental results on three real-world datasets show that our proposed method not only provides effective recommendations but also offers good explanations.

  Click for Model/Code and Paper
Effects of Image Degradations to CNN-based Image Classification

Oct 12, 2018
Yanting Pei, Yaping Huang, Qi Zou, Hao Zang, Xingyuan Zhang, Song Wang

Just like many other topics in computer vision, image classification has achieved significant progress recently by using deep-learning neural networks, especially the Convolutional Neural Networks (CNN). Most of the existing works are focused on classifying very clear natural images, evidenced by the widely used image databases such as Caltech-256, PASCAL VOCs and ImageNet. However, in many real applications, the acquired images may contain certain degradations that lead to various kinds of blurring, noise, and distortions. One important and interesting problem is the effect of such degradations to the performance of CNN-based image classification. More specifically, we wonder whether image-classification performance drops with each kind of degradation, whether this drop can be avoided by including degraded images into training, and whether existing computer vision algorithms that attempt to remove such degradations can help improve the image-classification performance. In this paper, we empirically study this problem for four kinds of degraded images -- hazy images, underwater images, motion-blurred images and fish-eye images. For this study, we synthesize a large number of such degraded images by applying respective physical models to the clear natural images and collect a new hazy image dataset from the Internet. We expect this work can draw more interests from the community to study the classification of degraded images.

  Click for Model/Code and Paper
Graph Edit Distance Computation via Graph Neural Networks

Oct 03, 2018
Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, Wei Wang

Graph similarity search is among the most important graph-based applications, e.g. finding the chemical compounds that are most similar to a query compound. Graph similarity/distance computation, such as Graph Edit Distance (GED) and Maximum Common Subgraph (MCS), is the core operation of graph similarity search and many other applications, but very costly to compute in practice. Inspired by the recent success of neural network approaches to several graph applications, such as node or graph classification, we propose a novel neural network based approach to address this classic yet challenging graph problem, aiming to alleviate the computational burden while preserving a good performance. The proposed approach, called SimGNN, combines two strategies. First, we design a learnable embedding function that maps every graph into an embedding vector, which provides a global summary of a graph. A novel attention mechanism is proposed to emphasize the important nodes with respect to a specific similarity metric. Second, we design a pairwise node comparison method to supplement the graph-level embeddings with fine-grained node-level information. Our model can be trained in an end-to-end fashion, achieves better generalization on unseen graphs, and in the worst case runs in quadratic time with respect to the number of nodes in two graphs. Taking GED computation as an example, experimental results on three real graph datasets demonstrate the effectiveness and efficiency of our approach. Specifically, our model achieves smaller error rate and great time reduction compared against a series of baselines, including several approximation algorithms on GED computation, and many existing graph neural network based models. Our study suggests SimGNN provides a new direction for future research on graph similarity computation and graph similarity search.

  Click for Model/Code and Paper
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration

Oct 28, 2019
Meelis Kull, Miquel Perello-Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, Peter Flach

Class probabilities predicted by most multiclass classifiers are uncalibrated, often tending towards over-confidence. With neural networks, calibration can be improved by temperature scaling, a method to learn a single corrective multiplicative factor for inputs to the last softmax layer. On non-neural models the existing methods apply binary calibration in a pairwise or one-vs-rest fashion. We propose a natively multiclass calibration method applicable to classifiers from any model class, derived from Dirichlet distributions and generalising the beta calibration method from binary classification. It is easily implemented with neural nets since it is equivalent to log-transforming the uncalibrated probabilities, followed by one linear layer and softmax. Experiments demonstrate improved probabilistic predictions according to multiple measures (confidence-ECE, classwise-ECE, log-loss, Brier score) across a wide range of datasets and classifiers. Parameters of the learned Dirichlet calibration map provide insights to the biases in the uncalibrated model.

* Accepted for presentation at NeurIPS 2019 

  Click for Model/Code and Paper
Robust Gaussian Process Regression for Real-Time High Precision GPS Signal Enhancement

Jun 03, 2019
Ming Lin, Xiaomin Song, Qi Qian, Hao Li, Liang Sun, Shenghuo Zhu, Rong Jin

Satellite-based positioning system such as GPS often suffers from large amount of noise that degrades the positioning accuracy dramatically especially in real-time applications. In this work, we consider a data-mining approach to enhance the GPS signal. We build a large-scale high precision GPS receiver grid system to collect real-time GPS signals for training. The Gaussian Process (GP) regression is chosen to model the vertical Total Electron Content (vTEC) distribution of the ionosphere of the Earth. Our experiments show that the noise in the real-time GPS signals often exceeds the breakdown point of the conventional robust regression methods resulting in sub-optimal system performance. We propose a three-step approach to address this challenge. In the first step we perform a set of signal validity tests to separate the signals into clean and dirty groups. In the second step, we train an initial model on the clean signals and then reweigting the dirty signals based on the residual error. A final model is retrained on both the clean signals and the reweighted dirty signals. In the theoretical analysis, we prove that the proposed three-step approach is able to tolerate much higher noise level than the vanilla robust regression methods if two reweighting rules are followed. We validate the superiority of the proposed method in our real-time high precision positioning system against several popular state-of-the-art robust regression methods. Our method achieves centimeter positioning accuracy in the benchmark region with probability $78.4\%$ , outperforming the second best baseline method by a margin of $8.3\%$. The benchmark takes 6 hours on 20,000 CPU cores or 14 years on a single CPU.

* accepted by SIGKDD 2019 

  Click for Model/Code and Paper
Object Boundary Guided Semantic Segmentation

Jul 06, 2016
Qin Huang, Chunyang Xia, Wenchao Zheng, Yuhang Song, Hao Xu, C. -C. Jay Kuo

Semantic segmentation is critical to image content understanding and object localization. Recent development in fully-convolutional neural network (FCN) has enabled accurate pixel-level labeling. One issue in previous works is that the FCN based method does not exploit the object boundary information to delineate segmentation details since the object boundary label is ignored in the network training. To tackle this problem, we introduce a double branch fully convolutional neural network, which separates the learning of the desirable semantic class labeling with mask-level object proposals guided by relabeled boundaries. This network, called object boundary guided FCN (OBG-FCN), is able to integrate the distinct properties of object shape and class features elegantly in a fully convolutional way with a designed masking architecture. We conduct experiments on the PASCAL VOC segmentation benchmark, and show that the end-to-end trainable OBG-FCN system offers great improvement in optimizing the target semantic segmentation quality.

* The results in the first version of this paper are mistaken due to overlapping validation data and incorrect benchmark methods 

  Click for Model/Code and Paper
Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks

Jun 09, 2019
Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai, Philip S. Yu

Events are happening in real-world and real-time, which can be planned and organized occasions involving multiple people and objects. Social media platforms publish a lot of text messages containing public events with comprehensive topics. However, mining social events is challenging due to the heterogeneous event elements in texts and explicit and implicit social network structures. In this paper, we design an event meta-schema to characterize the semantic relatedness of social events and build an event-based heterogeneous information network (HIN) integrating information from external knowledge base, and propose a novel Pair-wise Popularity Graph Convolutional Network (PP-GCN) based fine-grained social event categorization model. We propose a Knowledgeable meta-paths Instances based social Event Similarity (KIES) between events and build a weighted adjacent matrix as input to the PP-GCN model. Comprehensive experiments on real data collections are conducted to compare various social event detection and clustering tasks. Experimental results demonstrate that our proposed framework outperforms other alternative social event categorization techniques.

* Accepted by IJCAI'19(International Joint Conference on Artificial Intelligence) 

  Click for Model/Code and Paper