Binary neural networks (BNN) have been studied extensively since they run dramatically faster at lower memory and power consumption than floating-point networks, thanks to the efficiency of bit operations. However, contemporary BNNs whose weights and activations are both single bits suffer from severe accuracy degradation. To understand why, we investigate the representation ability, speed and bias/variance of BNNs through extensive experiments. We conclude that the error of BNNs is predominantly caused by the intrinsic instability (training time) and non-robustness (train \& test time). Inspired by this investigation, we propose the Binary Ensemble Neural Network (BENN) which leverages ensemble methods to improve the performance of BNNs with limited efficiency cost. While ensemble techniques have been broadly believed to be only marginally helpful for strong classifiers such as deep neural networks, our analyses and experiments show that they are naturally a perfect fit to boost BNNs. We find that our BENN, which is faster and much more robust than state-of-the-art binary networks, can even surpass the accuracy of the full-precision floating number network with the same architecture. Click to Read Paper
Generation of 3D data by deep neural network has been attracting increasing attention in the research community. The majority of extant works resort to regular representations such as volumetric grids or collection of images; however, these representations obscure the natural invariance of 3D shapes under geometric transformations and also suffer from a number of other issues. In this paper we address the problem of 3D reconstruction from a single image, generating a straight-forward form of output -- point cloud coordinates. Along with this problem arises a unique and interesting issue, that the groundtruth shape for an input image may be ambiguous. Driven by this unorthodox output form and the inherent ambiguity in groundtruth, we design architecture, loss function and learning paradigm that are novel and effective. Our final solution is a conditional shape sampler, capable of predicting multiple plausible 3D point clouds from an input image. In experiments not only can our system outperform state-of-the-art methods on single image based 3d reconstruction benchmarks; but it also shows a strong performance for 3d shape completion and promising ability in making multiple plausible predictions. Click to Read Paper
In this paper, we proposed a pose estimation system based on rendered image training set, which predicts the pose of objects in real image, with knowledge of object category and tight bounding box. We developed a patch-based multi-class classification algorithm, and an iterative approach to improve the accuracy. We achieved state-of-the-art performance on pose estimation task. Click to Read Paper
In this work, we propose to utilize Convolutional Neural Networks to boost the performance of depth-induced salient object detection by capturing the high-level representative features for depth modality. We formulate the depth-induced saliency detection as a CNN-based cross-modal transfer problem to bridge the gap between the "data-hungry" nature of CNNs and the unavailability of sufficient labeled training data in depth modality. In the proposed approach, we leverage the auxiliary data from the source modality effectively by training the RGB saliency detection network to obtain the task-specific pre-understanding layers for the target modality. Meanwhile, we exploit the depth-specific information by pre-training a modality classification network that encourages modal-specific representations during the optimizing course. Thus, it could make the feature representations of the RGB and depth modalities as discriminative as possible. These two modules are pre-trained independently and then stitched to initialize and optimize the eventual depth-induced saliency detection model. Experiments demonstrate the effectiveness of the proposed novel pre-training strategy as well as the significant and consistent improvements of the proposed approach over other state-of-the-art methods. Click to Read Paper
Given i.i.d samples from some unknown continuous density on hyper-rectangle $[0, 1]^d$, we attempt to learn a piecewise constant function that approximates this underlying density non-parametrically. Our density estimate is defined on a binary split of $[0, 1]^d$ and built up sequentially according to discrepancy criteria; the key ingredient is to control the discrepancy adaptively in each sub-rectangle to achieve overall bound. We prove that the estimate, even though simple as it appears, preserves most of the estimation power. By exploiting its structure, it can be directly applied to some important pattern recognition tasks such as mode seeking and density landscape exploration. We demonstrate its applicability through simulations and examples. Click to Read Paper
To reduce memory footprint and run-time latency, techniques such as neural network pruning and binarization have been explored separately. However, it is unclear how to combine the best of the two worlds to get extremely small and efficient models. In this paper, we, for the first time, define the filter-level pruning problem for binary neural networks, which cannot be solved by simply migrating existing structural pruning methods for full-precision models. A novel learning-based approach is proposed to prune filters in our main/subsidiary network framework, where the main network is responsible for learning representative features to optimize the prediction performance, and the subsidiary component works as a filter selector on the main network. To avoid gradient mismatch when training the subsidiary component, we propose a layer-wise and bottom-up scheme. We also provide the theoretical and experimental comparison between our learning-based and greedy rule-based methods. Finally, we empirically demonstrate the effectiveness of our approach applied on several binary models, including binarized NIN, VGG-11, and ResNet-18, on various image classification datasets. Click to Read Paper
Various 3D semantic attributes such as segmentation masks, geometric features, keypoints, and materials can be encoded as per-point probe functions on 3D geometries. Given a collection of related 3D shapes, we consider how to jointly analyze such probe functions over different shapes, and how to discover common latent structures using a neural network --- even in the absence of any correspondence information. Our network is trained on point cloud representations of shape geometry and associated semantic functions on that point cloud. These functions express a shared semantic understanding of the shapes but are not coordinated in any way. For example, in a segmentation task, the functions can be indicator functions of arbitrary sets of shape parts, with the particular combination involved not known to the network. Our network is able to produce a small dictionary of basis functions for each shape, a dictionary whose span includes the semantic functions provided for that shape. Even though our shapes have independent discretizations and no functional correspondences are provided, the network is able to generate latent bases, in a consistent order, that reflect the shared semantic structure among the shapes. We demonstrate the effectiveness of our technique in various segmentation and keypoint selection applications. Click to Read Paper
In this paper, we study the problem of semantic annotation on 3D models that are represented as shape graphs. A functional view is taken to represent localized information on graphs, so that annotations such as part segment or keypoint are nothing but 0-1 indicator vertex functions. Compared with images that are 2D grids, shape graphs are irregular and non-isomorphic data structures. To enable the prediction of vertex functions on them by convolutional neural networks, we resort to spectral CNN method that enables weight sharing by parameterizing kernels in the spectral domain spanned by graph laplacian eigenbases. Under this setting, our network, named SyncSpecCNN, strive to overcome two key challenges: how to share coefficients and conduct multi-scale analysis in different parts of the graph for a single shape, and how to share information across related but different shapes that may be represented by very different graphs. Towards these goals, we introduce a spectral parameterization of dilated convolutional kernels and a spectral transformer network. Experimentally we tested our SyncSpecCNN on various tasks, including 3D shape part segmentation and 3D keypoint prediction. State-of-the-art performance has been achieved on all benchmark datasets. Click to Read Paper
Comparing two images in a view-invariant way has been a challenging problem in computer vision for a long time, as visual features are not stable under large view point changes. In this paper, given a single input image of an object, we synthesize new features for other views of the same object. To accomplish this, we introduce an aligned set of 3D models in the same class as the input object image. Each 3D model is represented by a set of views, and we study the correlation of image patches between different views, seeking what we call surrogates --- patches in one view whose feature content predicts well the features of a patch in another view. In particular, for each patch in the novel desired view, we seek surrogates from the observed view of the given image. For a given surrogate, we predict that surrogate using linear combination of the corresponding patches of the 3D model views, learn the coefficients, and then transfer these coefficients on a per patch basis to synthesize the features of the patch in the novel view. In this way we can create feature sets for all views of the latent object, providing us a multi-view representation of the object. View-invariant object comparisons are achieved simply by computing the $L^2$ distances between the features of corresponding views. We provide theoretical and empirical analysis of the feature synthesis process, and evaluate the proposed view-agnostic distance (VAD) in fine-grained image retrieval (100 object classes) and classification tasks. Experimental results show that our synthesized features do enable view-independent comparison between images and perform significantly better than traditional image features in this respect. Click to Read Paper
Using sparse-inducing norms to learn robust models has received increasing attention from many fields for its attractive properties. Projection-based methods have been widely applied to learning tasks constrained by such norms. As a key building block of these methods, an efficient operator for Euclidean projection onto the intersection of $\ell_1$ and $\ell_{1,q}$ norm balls $(q=2\text{or}\infty)$ is proposed in this paper. We prove that the projection can be reduced to finding the root of an auxiliary function which is piecewise smooth and monotonic. Hence, a bisection algorithm is sufficient to solve the problem. We show that the time complexity of our solution is $O(n+g\log g)$ for $q=2$ and $O(n\log n)$ for $q=\infty$, where $n$ is the dimensionality of the vector to be projected and $g$ is the number of disjoint groups; we confirm this complexity by experimentation. Empirical study reveals that our method achieves significantly better performance than classical methods in terms of running time and memory usage. We further show that embedded with our efficient projection operator, projection-based algorithms can solve regression problems with composite norm constraints more efficiently than other methods and give superior accuracy. Click to Read Paper
We study how to synthesize novel views of human body from a single image. Though recent deep learning based methods work well for rigid objects, they often fail on objects with large articulation, like human bodies. The core step of existing methods is to fit a map from the observable views to novel views by CNNs; however, the rich articulation modes of human body make it rather challenging for CNNs to memorize and interpolate the data well. To address the problem, we propose a novel deep learning based pipeline that explicitly estimates and leverages the geometry of the underlying human body. Our new pipeline is a composition of a shape estimation network and an image generation network, and at the interface a perspective transformation is applied to generate a forward flow for pixel value transportation. Our design is able to factor out the space of data variation and makes learning at each step much easier. Empirically, we show that the performance for pose-varying objects can be improved dramatically. Our method can also be applied on real data captured by 3D sensors, and the flow generated by our methods can be used for generating high quality results in higher resolution. Click to Read Paper
In spoken dialogue systems, we aim to deploy artificial intelligence to build automated dialogue agents that can converse with humans. A part of this effort is the policy optimisation task, which attempts to find a policy describing how to respond to humans, in the form of a function taking the current state of the dialogue and returning the response of the system. In this paper, we investigate deep reinforcement learning approaches to solve this problem. Particular attention is given to actor-critic methods, off-policy reinforcement learning with experience replay, and various methods aimed at reducing the bias and variance of estimators. When combined, these methods result in the previously proposed ACER algorithm that gave competitive results in gaming environments. These environments however are fully observable and have a relatively small action set so in this paper we examine the application of ACER to dialogue policy optimisation. We show that this method beats the current state-of-the-art in deep learning approaches for spoken dialogue systems. This not only leads to a more sample efficient algorithm that can train faster, but also allows us to apply the algorithm in more difficult environments than before. We thus experiment with learning in a very large action space, which has two orders of magnitude more actions than previously considered. We find that ACER trains significantly faster than the current state-of-the-art. Click to Read Paper
There is a wide gap between symbolic reasoning and deep learning. In this research, we explore the possibility of using deep learning to improve symbolic reasoning. Briefly, in a reasoning system, a deep feedforward neural network is used to guide rewriting processes after learning from algebraic reasoning examples produced by humans. To enable the neural network to recognise patterns of algebraic expressions with non-deterministic sizes, reduced partial trees are used to represent the expressions. Also, to represent both top-down and bottom-up information of the expressions, a centralisation technique is used to improve the reduced partial trees. Besides, symbolic association vectors and rule application records are used to improve the rewriting processes. Experimental results reveal that the algebraic reasoning examples can be accurately learnt only if the feedforward neural network has enough hidden layers. Also, the centralisation technique, the symbolic association vectors and the rule application records can reduce error rates of reasoning. In particular, the above approaches have led to 4.6% error rate of reasoning on a dataset of linear equations, differentials and integrals. Click to Read Paper
We consider the non-Lambertian object intrinsic problem of recovering diffuse albedo, shading, and specular highlights from a single image of an object. We build a large-scale object intrinsics database based on existing 3D models in the ShapeNet database. Rendered with realistic environment maps, millions of synthetic images of objects and their corresponding albedo, shading, and specular ground-truth images are used to train an encoder-decoder CNN. Once trained, the network can decompose an image into the product of albedo and shading components, along with an additive specular component. Our CNN delivers accurate and sharp results in this classical inverse problem of computer vision, sharp details attributed to skip layer connections at corresponding resolutions from the encoder to the decoder. Benchmarked on our ShapeNet and MIT intrinsics datasets, our model consistently outperforms the state-of-the-art by a large margin. We train and test our CNN on different object categories. Perhaps surprising especially from the CNN classification perspective, our intrinsics CNN generalizes very well across categories. Our analysis shows that feature learning at the encoder stage is more crucial for developing a universal representation across categories. We apply our synthetic data trained model to images and videos downloaded from the internet, and observe robust and realistic intrinsics results. Quality non-Lambertian intrinsics could open up many interesting applications such as image-based albedo and specular editing. Click to Read Paper
Object viewpoint estimation from 2D images is an essential task in computer vision. However, two issues hinder its progress: scarcity of training data with viewpoint annotations, and a lack of powerful features. Inspired by the growing availability of 3D models, we propose a framework to address both issues by combining render-based image synthesis and CNNs. We believe that 3D models have the potential in generating a large number of images of high variation, which can be well exploited by deep CNN with a high learning capacity. Towards this goal, we propose a scalable and overfit-resistant image synthesis pipeline, together with a novel CNN specifically tailored for the viewpoint estimation task. Experimentally, we show that the viewpoint estimation from our pipeline can significantly outperform state-of-the-art methods on PASCAL 3D+ benchmark. Click to Read Paper
Dynamic spectrum access (DSA) is regarded as an effective and efficient technology to share radio spectrum among different networks. As a secondary user (SU), a DSA device will face two critical problems: avoiding causing harmful interference to primary users (PUs), and conducting effective interference coordination with other secondary users. These two problems become even more challenging for a distributed DSA network where there is no centralized controllers for SUs. In this paper, we investigate communication strategies of a distributive DSA network under the presence of spectrum sensing errors. To be specific, we apply the powerful machine learning tool, deep reinforcement learning (DRL), for SUs to learn "appropriate" spectrum access strategies in a distributed fashion assuming NO knowledge of the underlying system statistics. Furthermore, a special type of recurrent neural network (RNN), called the reservoir computing (RC), is utilized to realize DRL by taking advantage of the underlying temporal correlation of the DSA network. Using the introduced machine learning-based strategy, SUs could make spectrum access decisions distributedly relying only on their own current and past spectrum sensing outcomes. Through extensive experiments, our results suggest that the RC-based spectrum access strategy can help the SU to significantly reduce the chances of collision with PUs and other SUs. We also show that our scheme outperforms the myopic method which assumes the knowledge of system statistics, and converges faster than the Q-learning method when the number of channels is large. Click to Read Paper
Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds. Click to Read Paper
Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds and well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption. Click to Read Paper
We propose an adversarial defense method that achieves state-of-the-art performance among attack-agnostic adversarial defense methods while also maintaining robustness to input resolution, scale of adversarial perturbation, and scale of dataset size. Based on convolutional sparse coding, we construct a stratified low-dimensional quasi-natural image space that faithfully approximates the natural image space while also removing adversarial perturbations. We introduce a novel Sparse Transformation Layer (STL) in between the input image and the first layer of the neural network to efficiently project images into our quasi-natural image space. Our experiments show state-of-the-art performance of our method compared to other attack-agnostic adversarial defense methods in various adversarial settings. Click to Read Paper
We present a learning framework for abstracting complex shapes by learning to assemble objects using 3D volumetric primitives. In addition to generating simple and geometrically interpretable explanations of 3D objects, our framework also allows us to automatically discover and exploit consistent structure in the data. We demonstrate that using our method allows predicting shape representations which can be leveraged for obtaining a consistent parsing across the instances of a shape collection and constructing an interpretable shape similarity measure. We also examine applications for image-based prediction as well as shape manipulation. Click to Read Paper