In recent years, kernel density estimation has been exploited by computer scientists to model machine learning problems. The kernel density estimation based approaches are of interest due to the low time complexity of either O(n) or O(n*log(n)) for constructing a classifier, where n is the number of sampling instances. Concerning design of kernel density estimators, one essential issue is how fast the pointwise mean square error (MSE) and/or the integrated mean square error (IMSE) diminish as the number of sampling instances increases. In this article, it is shown that with the proposed kernel function it is feasible to make the pointwise MSE of the density estimator converge at O(n^-2/3) regardless of the dimension of the vector space, provided that the probability density function at the point of interest meets certain conditions. Click to Read Paper
Deep metric learning aims to learn a function mapping image pixels to embedding feature vectors that model the similarity between images. The majority of current approaches are non-parametric, learning the metric space directly through the supervision of similar (pairs) or relatively similar (triplets) sets of images. A difficult challenge for training these approaches is mining informative samples of images as the metric space is learned with only the local context present within a single mini-batch. Alternative approaches use parametric metric learning to eliminate the need for sampling through supervision of images to proxies. Although this simplifies optimization, such proxy-based approaches have lagged behind in performance. In this work, we demonstrate that a standard classification network can be transformed into a variant of proxy-based metric learning that is competitive against non-parametric approaches across a wide variety of image retrieval tasks. We address key challenges in proxy-based metric learning such as performance under extreme classification and describe techniques to stabilize and learn higher dimensional embeddings. We evaluate our approach on the CAR-196, CUB-200-2011, Stanford Online Product, and In-Shop datasets for image retrieval and clustering. Finally, we show that our softmax classification approach can learn high-dimensional binary embeddings that achieve new state-of-the-art performance on all datasets evaluated with a memory footprint that is the same or smaller than competing approaches. Click to Read Paper
This paper considers online convex optimization over a complicated constraint set, which typically consists of multiple functional constraints and a set constraint. The conventional projection based online projection algorithm (Zinkevich, 2003) can be difficult to implement due to the potentially high computation complexity of the projection operation. In this paper, we relax the functional constraints by allowing them to be violated at each round but still requiring them to be satisfied in the long term. This type of relaxed online convex optimization (with long term constraints) was first considered in Mahdavi et al. (2012). That prior work proposes an algorithm to achieve $O(\sqrt{T})$ regret and $O(T^{3/4})$ constraint violations for general problems and another algorithm to achieve an $O(T^{2/3})$ bound for both regret and constraint violations when the constraint set can be described by a finite number of linear constraints. A recent extension in Jenatton et al. (2016) can achieve $O(T^{\max\{\beta,1-\beta\}})$ regret and $O(T^{1-\beta/2})$ constraint violations where $\beta\in (0,1)$. The current paper proposes a new simple algorithm that yields improved performance in comparison to prior works. The new algorithm achieves an $O(\sqrt{T})$ regret bound with finite constraint violations. Click to Read Paper
Many knowledge graph embedding methods operate on triples and are therefore implicitly limited by a very local view of the entire knowledge graph. We present a new framework MOHONE to effectively model higher order network effects in knowledge-graphs, thus enabling one to capture varying degrees of network connectivity (from the local to the global). Our framework is generic, explicitly models the network scale, and captures two different aspects of similarity in networks: (a) shared local neighborhood and (b) structural role-based similarity. First, we introduce methods that learn network representations of entities in the knowledge graph capturing these varied aspects of similarity. We then propose a fast, efficient method to incorporate the information captured by these network representations into existing knowledge graph embeddings. We show that our method consistently and significantly improves the performance on link prediction of several different knowledge-graph embedding methods including TRANSE, TRANSD, DISTMULT, and COMPLEX(by at least 4 points or 17% in some cases). Click to Read Paper
For large scale non-convex stochastic optimization, parallel mini-batch SGD using multiple workers ideally can achieve a linear speed-up with respect to the number of workers compared with SGD over a single worker. However, such linear scalability in practice is significantly limited by the growing demand for communication as more workers are involved. This is because the classical parallel mini-batch SGD requires gradient or model exchanges between workers (possibly through an intermediate server) at every iteration. In this paper, we study whether it is possible to maintain the linear speed-up property of parallel mini-batch SGD by using less frequent message passing between workers. We consider the parallel restarted SGD method where each worker periodically restarts its SGD by using the node average as a new initial point. Such a strategy invokes inter-node communication only when computing the node average to restart local SGD but otherwise is fully parallel with no communication overhead. We prove that the parallel restarted SGD method can maintain the same convergence rate as the classical parallel mini-batch SGD while reducing the communication overhead by a factor of $O(T^{1/4})$. The parallel restarted SGD strategy was previously used as a common practice, known as model averaging, for training deep neural networks. Earlier empirical works have observed that model averaging can achieve an almost linear speed-up if the averaging interval is carefully controlled. The results in this paper can serve as theoretical justifications for these empirical results on model averaging and provide practical guidelines for applying model averaging. Click to Read Paper
We report about probabilistic likelihood estimates that are performed on time series using an echo state network with orthogonal recurrent connectivity. The results from tests using synthetic stochastic input time series with temporal inference indicate that the capability of the network to infer depends on the balance between input strength and recurrent activity. This balance has an influence on the network with regard to the quality of inference from the short term input history versus inference that accounts for influences that date back a long time. Sensitivity of such networks against noise and the finite accuracy of network states in the recurrent layer are investigated. In addition, a measure based on mutual information between the output time series and the reservoir is introduced. Finally, different types of recurrent connectivity are evaluated. Orthogonal matrices show the best results of all investigated connectivity types overall, but also in the way how the network performance scales with the size of the recurrent layer. Click to Read Paper
Occlusion is one of the most challenging problems in depth estimation. Previous work has modeled the single-occluder occlusion in light field and get good results, however it is still difficult to obtain accurate depth for multi-occluder occlusion. In this paper, we explore the multi-occluder occlusion model in light field, and derive the occluder-consistency between the spatial and angular space which is used as a guidance to select the un-occluded views for each candidate occlusion point. Then an anti-occlusion energy function is built to regularize depth map. The experimental results on public light field datasets have demonstrated the advantages of the proposed algorithm compared with other state-of-the-art light field depth estimation algorithms, especially in multi-occluder areas. Click to Read Paper
Convolutional Neural Networks have demonstrated superior performance on single image depth estimation in recent years. These works usually use stacked spatial pooling or strided convolution to get high-level information which are common practices in classification task. However, depth estimation is a dense prediction problem and low-resolution feature maps usually generate blurred depth map which is undesirable in application. In order to produce high quality depth map, say clean and accurate, we propose a network consists of a Dense Feature Extractor (DFE) and a Depth Map Generator (DMG). The DFE combines ResNet and dilated convolutions. It extracts multi-scale information from input image while keeping the feature maps dense. As for DMG, we use attention mechanism to fuse multi-scale features produced in DFE. Our Network is trained end-to-end and does not need any post-processing. Hence, it runs fast and can predict depth map in about 15 fps. Experiment results show that our method is competitive with the state-of-the-art in quantitative evaluation, but can preserve better structural details of the scene depth. Click to Read Paper
Recent advances in object detection are mainly driven by deep learning with large-scale detection benchmarks. However, the fully-annotated training set is often limited for a target detection task, which may deteriorate the performance of deep detectors. To address this challenge, we propose a novel low-shot transfer detector (LSTD) in this paper, where we leverage rich source-domain knowledge to construct an effective target-domain detector with very few training examples. The main contributions are described as follows. First, we design a flexible deep architecture of LSTD to alleviate transfer difficulties in low-shot detection. This architecture can integrate the advantages of both SSD and Faster RCNN in a unified deep framework. Second, we introduce a novel regularized transfer learning framework for low-shot detection, where the transfer knowledge (TK) and background depression (BD) regularizations are proposed to leverage object knowledge respectively from source and target domains, in order to further enhance fine-tuning with a few target images. Finally, we examine our LSTD on a number of challenging low-shot detection experiments, where LSTD outperforms other state-of-the-art approaches. The results demonstrate that LSTD is a preferable deep detector for low-shot scenarios. Click to Read Paper
This paper considers online convex optimization (OCO) with stochastic constraints, which generalizes Zinkevich's OCO over a known simple fixed set by introducing multiple stochastic functional constraints that are i.i.d. generated at each round and are disclosed to the decision maker only after the decision is made. This formulation arises naturally when decisions are restricted by stochastic environments or deterministic environments with noisy observations. It also includes many important problems as special cases, such as OCO with long term constraints, stochastic constrained convex optimization, and deterministic constrained convex optimization. To solve this problem, this paper proposes a new algorithm that achieves $O(\sqrt{T})$ expected regret and constraint violations and $O(\sqrt{T}\log(T))$ high probability regret and constraint violations. Experiments on a real-world data center scheduling problem further verify the performance of the new algorithm. Click to Read Paper
Item Response Theory (IRT) allows for measuring ability of Machine Learning models as compared to a human population. However, it is difficult to create a large dataset to train the ability of deep neural network models (DNNs). We propose Crowd-Informed Fine-Tuning (CIFT) as a new training process, where a pre-trained model is fine-tuned with a specialized supplemental training set obtained via IRT model-fitting on a large set of crowdsourced response patterns. With CIFT we can leverage the specialized set of data obtained through IRT to inform parameter tuning in DNNs. We experiment with two loss functions in CIFT to represent (i) memorization of fine-tuning items and (ii) learning a probability distribution over potential labels that is similar to the crowdsourced distribution over labels to simulate crowd knowledge. Our results show that CIFT improves ability for a state-of-the art DNN model for Recognizing Textual Entailment (RTE) tasks and is generalizable to a large-scale RTE test set. Click to Read Paper
Apprenticeship learning has recently attracted a wide attention due to its capability of allowing robots to learn physical tasks directly from demonstrations provided by human experts. Most previous techniques assumed that the state space is known a priori or employed simple state representations that usually suffer from perceptual aliasing. Different from previous research, we propose a novel approach named Sequence-based Multimodal Apprenticeship Learning (SMAL), which is capable to simultaneously fusing temporal information and multimodal data, and to integrate robot perception with decision making. To evaluate the SMAL approach, experiments are performed using both simulations and real-world robots in the challenging search and rescue scenarios. The empirical study has validated that our SMAL approach can effectively learn plans for robots to make decisions using sequence of multimodal observations. Experimental results have also showed that SMAL outperforms the baseline methods using individual images. Click to Read Paper
Evaluation of NLP methods requires testing against a previously vetted gold-standard test set and reporting standard metrics (accuracy/precision/recall/F1). The current assumption is that all items in a given test set are equal with regards to difficulty and discriminating power. We propose Item Response Theory (IRT) from psychometrics as an alternative means for gold-standard test-set generation and NLP system evaluation. IRT is able to describe characteristics of individual items - their difficulty and discriminating power - and can account for these characteristics in its estimation of human intelligence or ability for an NLP task. In this paper, we demonstrate IRT by generating a gold-standard test set for Recognizing Textual Entailment. By collecting a large number of human responses and fitting our IRT model, we show that our IRT model compares NLP systems with the performance in a human population and is able to provide more insight into system performance than standard evaluation metrics. We show that a high accuracy score does not always imply a high IRT score, which depends on the item characteristics and the response pattern. Click to Read Paper
Despite the great success of word embedding, sentence embedding remains a not-well-solved problem. In this paper, we present a supervised learning framework to exploit sentence embedding for the medical question answering task. The learning framework consists of two main parts: 1) a sentence embedding producing module, and 2) a scoring module. The former is developed with contextual self-attention and multi-scale techniques to encode a sentence into an embedding tensor. This module is shortly called Contextual self-Attention Multi-scale Sentence Embedding (CAMSE). The latter employs two scoring strategies: Semantic Matching Scoring (SMS) and Semantic Association Scoring (SAS). SMS measures similarity while SAS captures association between sentence pairs: a medical question concatenated with a candidate choice, and a piece of corresponding supportive evidence. The proposed framework is examined by two Medical Question Answering(MedicalQA) datasets which are collected from real-world applications: medical exam and clinical diagnosis based on electronic medical records (EMR). The comparison results show that our proposed framework achieved significant improvements compared to competitive baseline approaches. Additionally, a series of controlled experiments are also conducted to illustrate that the multi-scale strategy and the contextual self-attention layer play important roles for producing effective sentence embedding, and the two kinds of scoring strategies are highly complementary to each other for question answering problems. Click to Read Paper
In the Internet age, cyber-attacks occur frequently with complex types. Traffic generated by access activities can record website status and user request information, which brings a great opportunity for network attack detection. Among diverse network protocols, Hypertext Transfer Protocol (HTTP) is widely used in government, organizations and enterprises. In this work, we propose DeepHTTP, a semantics structure integration model utilizing Bidirectional Long Short-Term Memory (Bi-LSTM) with attention mechanism to model HTTP traffic as a natural language sequence. In addition to extracting traffic content information, we integrate structural information to enhance the generalization capabilities of the model. Moreover, the application of attention mechanism can assist in discovering critical parts of anomalous traffic and further mining attack patterns. Additionally, we demonstrate how to incrementally update the data set and retrain model so that it can be adapted to new anomalous traffic. Extensive experimental evaluations over large traffic data have illustrated that DeepHTTP has outstanding performance in traffic detection and pattern discovery. Click to Read Paper
Various 3D semantic attributes such as segmentation masks, geometric features, keypoints, and materials can be encoded as per-point probe functions on 3D geometries. Given a collection of related 3D shapes, we consider how to jointly analyze such probe functions over different shapes, and how to discover common latent structures using a neural network --- even in the absence of any correspondence information. Our network is trained on point cloud representations of shape geometry and associated semantic functions on that point cloud. These functions express a shared semantic understanding of the shapes but are not coordinated in any way. For example, in a segmentation task, the functions can be indicator functions of arbitrary sets of shape parts, with the particular combination involved not known to the network. Our network is able to produce a small dictionary of basis functions for each shape, a dictionary whose span includes the semantic functions provided for that shape. Even though our shapes have independent discretizations and no functional correspondences are provided, the network is able to generate latent bases, in a consistent order, that reflect the shared semantic structure among the shapes. We demonstrate the effectiveness of our technique in various segmentation and keypoint selection applications. Click to Read Paper
End-to-end (E2E) automatic speech recognition (ASR) systems directly map acoustics to words using a unified model. Previous works mostly focus on E2E training a single model which integrates acoustic and language model into a whole. Although E2E training benefits from sequence modeling and simplified decoding pipelines, large amount of transcribed acoustic data is usually required, and traditional acoustic and language modelling techniques cannot be utilized. In this paper, a novel modular training framework of E2E ASR is proposed to separately train neural acoustic and language models during training stage, while still performing end-to-end inference in decoding stage. Here, an acoustics-to-phoneme model (A2P) and a phoneme-to-word model (P2W) are trained using acoustic data and text data respectively. A phone synchronous decoding (PSD) module is inserted between A2P and P2W to reduce sequence lengths without precision loss. Finally, modules are integrated into an acousticsto-word model (A2W) and jointly optimized using acoustic data to retain the advantage of sequence modeling. Experiments on a 300- hour Switchboard task show significant improvement over the direct A2W model. The efficiency in both training and decoding also benefits from the proposed method. Click to Read Paper
Recently, knowledge graph embedding, which projects symbolic entities and relations into continuous vector space, has become a new, hot topic in artificial intelligence. This paper addresses a new issue of multiple relation semantics that a relation may have multiple meanings revealed by the entity pairs associated with the corresponding triples, and proposes a novel Gaussian mixture model for embedding, TransG. The new model can discover latent semantics for a relation and leverage a mixture of relation component vectors for embedding a fact triple. To the best of our knowledge, this is the first generative model for knowledge graph embedding, which is able to deal with multiple relation semantics. Extensive experiments show that the proposed model achieves substantial improvements against the state-of-the-art baselines. Click to Read Paper
In this paper, we propose a way of synthesizing realistic images directly with natural language description, which has many useful applications, e.g. intelligent image manipulation. We attempt to accomplish such synthesis: given a source image and a target text description, our model synthesizes images to meet two requirements: 1) being realistic while matching the target text description; 2) maintaining other image features that are irrelevant to the text description. The model should be able to disentangle the semantic information from the two modalities (image and text), and generate new images from the combined semantics. To achieve this, we proposed an end-to-end neural architecture that leverages adversarial learning to automatically learn implicit loss functions, which are optimized to fulfill the aforementioned two requirements. We have evaluated our model by conducting experiments on Caltech-200 bird dataset and Oxford-102 flower dataset, and have demonstrated that our model is capable of synthesizing realistic images that match the given descriptions, while still maintain other features of original images. Click to Read Paper
In this paper, we develop a binary convolutional encoder-decoder network (B-CEDNet) for natural scene text processing (NSTP). It converts a text image to a class-distinguished salience map that reveals the categorical, spatial and morphological information of characters. The existing solutions are either memory consuming or run-time consuming that cannot be applied to real-time applications on resource-constrained devices such as advanced driver assistance systems. The developed network can process multiple regions containing characters by one-off forward operation, and is trained to have binary weights and binary feature maps, which lead to both remarkable inference run-time speedup and memory usage reduction. By training with over 200, 000 synthesis scene text images (size of $32\times128$), it can achieve $90\%$ and $91\%$ pixel-wise accuracy on ICDAR-03 and ICDAR-13 datasets. It only consumes $4.59\ ms$ inference run-time realized on GPU with a small network size of 2.14 MB, which is up to $8\times$ faster and $96\%$ smaller than it full-precision version. Click to Read Paper