Natural language understanding often requires deep semantic knowledge. Expanding on previous proposals, we suggest that some important aspects of semantic knowledge can be modeled as a language model if done at an appropriate level of abstraction. We develop two distinct models that capture semantic frame chains and discourse information while abstracting over the specific mentions of predicates and entities. For each model, we investigate four implementations: a "standard" N-gram language model and three discriminatively trained "neural" language models that generate embeddings for semantic frames. The quality of the semantic language models (SemLM) is evaluated both intrinsically, using perplexity and a narrative cloze test and extrinsically - we show that our SemLM helps improve performance on semantic natural language processing tasks such as co-reference resolution and discourse parsing. Click to Read Paper
Extracting temporal relations (before, after, overlapping, etc.) is a key aspect of understanding events described in natural language. We argue that this task would gain from the availability of a resource that provides prior knowledge in the form of the temporal order that events usually follow. This paper develops such a resource -- a probabilistic knowledge base acquired in the news domain -- by extracting temporal relations between events from the New York Times (NYT) articles over a 20-year span (1987--2007). We show that existing temporal extraction systems can be improved via this resource. As a byproduct, we also show that interesting statistics can be retrieved from this resource, which can potentially benefit other time-aware tasks. The proposed system and resource are both publicly available. Click to Read Paper