Models, code, and papers for "Heming Zhang":

Deep Kinship Verification via Appearance-shape Joint Prediction and Adaptation-based Approach

May 15, 2019
Heming Zhang, Xiaolong Wang, C. -C. Jay Kuo

Kinship verification aims to identify the kin relation between two given face images. It is a very challenging problem due to the lack of training data and facial similarity variations between kinship pairs. In this work, we build a novel appearance and shape based deep learning pipeline. First we adopt the knowledge learned from general face recognition network to learn general facial features. Afterwards, we learn kinship oriented appearance and shape features from kinship pairs and combine them for the final prediction. We have evaluated the model performance on a widely used popular benchmark and demonstrated the superiority over the state-of-the-art.

* ICIP 2019 

  Click for Model/Code and Paper
Accelerating Proposal Generation Network for \\Fast Face Detection on Mobile Devices

Apr 27, 2019
Heming Zhang, Xiaolong Wang, Jingwen Zhu, C. -C. Jay Kuo

Face detection is a widely studied problem over the past few decades. Recently, significant improvements have been achieved via the deep neural network, however, it is still challenging to directly apply these techniques to mobile devices for its limited computational power and memory. In this work, we present a proposal generation acceleration framework for real-time face detection. More specifically, we adopt a popular cascaded convolutional neural network (CNN) as the basis, then apply our acceleration approach on the basic framework to speed up the model inference time. We are motivated by the observation that the computation bottleneck of this framework arises from the proposal generation stage, where each level of the dense image pyramid has to go through the network. In this work, we reduce the number of image pyramid levels by utilizing both global and local facial characteristics (i.e., global face and facial parts). Experimental results on public benchmarks WIDER-face and FDDB demonstrate the satisfactory performance and faster speed compared to the state-of-the-arts. %the comparable accuracy to state-of-the-arts with faster speed.


  Click for Model/Code and Paper
Regularize, Expand and Compress: Multi-task based Lifelong Learning via NonExpansive AutoML

Mar 20, 2019
Jie Zhang, Junting Zhang, Shalini Ghosh, Dawei Li, Jingwen Zhu, Heming Zhang, Yalin Wang

Lifelong learning, the problem of continual learning where tasks arrive in sequence, has been lately attracting more attention in the computer vision community. The aim of lifelong learning is to develop a system that can learn new tasks while maintaining the performance on the previously learned tasks. However, there are two obstacles for lifelong learning of deep neural networks: catastrophic forgetting and capacity limitation. To solve the above issues, inspired by the recent breakthroughs in automatically learning good neural network architectures, we develop a Multi-task based lifelong learning via nonexpansive AutoML framework termed Regularize, Expand and Compress (REC). REC is composed of three stages: 1) continually learns the sequential tasks without the learned tasks' data via a newly proposed multi-task weight consolidation (MWC) algorithm; 2) expands the network to help the lifelong learning with potentially improved model capability and performance by network-transformation based AutoML; 3) compresses the expanded model after learning every new task to maintain model efficiency and performance. The proposed MWC and REC algorithms achieve superior performance over other lifelong learning algorithms on four different datasets.

* 9 pages, 6 figures 

  Click for Model/Code and Paper
Generative Visual Dialogue System via Adaptive Reasoning and Weighted Likelihood Estimation

Feb 26, 2019
Heming Zhang, Shalini Ghosh, Larry Heck, Stephen Walsh, Junting Zhang, Jie Zhang, C. -C. Jay Kuo

The key challenge of generative Visual Dialogue (VD) systems is to respond to human queries with informative answers in natural and contiguous conversation flow. Traditional Maximum Likelihood Estimation (MLE)-based methods only learn from positive responses but ignore the negative responses, and consequently tend to yield safe or generic responses. To address this issue, we propose a novel training scheme in conjunction with weighted likelihood estimation (WLE) method. Furthermore, an adaptive multi-modal reasoning module is designed, to accommodate various dialogue scenarios automatically and select relevant information accordingly. The experimental results on the VisDial benchmark demonstrate the superiority of our proposed algorithm over other state-of-the-art approaches, with an improvement of 5.81% on recall@10.

  Click for Model/Code and Paper
Class-incremental Learning via Deep Model Consolidation

Mar 28, 2019
Junting Zhang, Jie Zhang, Shalini Ghosh, Dawei Li, Serafettin Tasci, Larry Heck, Heming Zhang, C. -C. Jay Kuo

Deep neural networks (DNNs) often suffer from "catastrophic forgetting" during incremental learning (IL) --- an abrupt degradation of performance on the original set of classes when the training objective is adapted to a newly added set of classes. Existing IL approaches tend to produce a model that is biased towards either the old classes or new classes, unless with the help of exemplars of the old data. To address this issue, we propose a class-incremental learning paradigm called Deep Model Consolidation (DMC), which works well even when the original training data is not available. The idea is to first train a separate model only for the new classes, and then combine the two individual models trained on data of two distinct set of classes (old classes and new classes) via a novel dual distillation training objective. The two existing models are consolidated by exploiting publicly available unlabeled auxiliary data. This overcomes the potential difficulties due to unavailability of original training data. Compared to the state-of-the-art techniques, DMC demonstrates significantly better performance in CIFAR-100 image classification and PASCAL VOC 2007 object detection benchmarks in the single-headed IL setting.

  Click for Model/Code and Paper