Models, code, and papers for "Hendrik Strobelt":

GLTR: Statistical Detection and Visualization of Generated Text

Jun 10, 2019
Sebastian Gehrmann, Hendrik Strobelt, Alexander M. Rush

The rapid improvement of language models has raised the specter of abuse of text generation systems. This progress motivates the development of simple methods for detecting generated text that can be used by and explained to non-experts. We develop GLTR, a tool to support humans in detecting whether a text was generated by a model. GLTR applies a suite of baseline statistical methods that can detect generation artifacts across common sampling schemes. In a human-subjects study, we show that the annotation scheme provided by GLTR improves the human detection-rate of fake text from 54% to 72% without any prior training. GLTR is open-source and publicly deployed, and has already been widely used to detect generated outputs

* ACL 2019 Demo Track 

  Click for Model/Code and Paper
Ablate, Variate, and Contemplate: Visual Analytics for Discovering Neural Architectures

Jul 30, 2019
Dylan Cashman, Adam Perer, Remco Chang, Hendrik Strobelt

Deep learning models require the configuration of many layers and parameters in order to get good results. However, there are currently few systematic guidelines for how to configure a successful model. This means model builders often have to experiment with different configurations by manually programming different architectures (which is tedious and time consuming) or rely on purely automated approaches to generate and train the architectures (which is expensive). In this paper, we present Rapid Exploration of Model Architectures and Parameters, or REMAP, a visual analytics tool that allows a model builder to discover a deep learning model quickly via exploration and rapid experimentation of neural network architectures. In REMAP, the user explores the large and complex parameter space for neural network architectures using a combination of global inspection and local experimentation. Through a visual overview of a set of models, the user identifies interesting clusters of architectures. Based on their findings, the user can run ablation and variation experiments to identify the effects of adding, removing, or replacing layers in a given architecture and generate new models accordingly. They can also handcraft new models using a simple graphical interface. As a result, a model builder can build deep learning models quickly, efficiently, and without manual programming. We inform the design of REMAP through a design study with four deep learning model builders. Through a use case, we demonstrate that REMAP allows users to discover performant neural network architectures efficiently using visual exploration and user-defined semi-automated searches through the model space.


  Click for Model/Code and Paper
LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks

Oct 30, 2017
Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, Alexander M. Rush

Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVIS, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks.

* InfoVis 2017 

  Click for Model/Code and Paper
Visual Interaction with Deep Learning Models through Collaborative Semantic Inference

Jul 24, 2019
Sebastian Gehrmann, Hendrik Strobelt, Robert Krüger, Hanspeter Pfister, Alexander M. Rush

Automation of tasks can have critical consequences when humans lose agency over decision processes. Deep learning models are particularly susceptible since current black-box approaches lack explainable reasoning. We argue that both the visual interface and model structure of deep learning systems need to take into account interaction design. We propose a framework of collaborative semantic inference (CSI) for the co-design of interactions and models to enable visual collaboration between humans and algorithms. The approach exposes the intermediate reasoning process of models which allows semantic interactions with the visual metaphors of a problem, which means that a user can both understand and control parts of the model reasoning process. We demonstrate the feasibility of CSI with a co-designed case study of a document summarization system.

* IEEE VIS 2019 (VAST) 

  Click for Model/Code and Paper
Seq2Seq-Vis: A Visual Debugging Tool for Sequence-to-Sequence Models

Oct 16, 2018
Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter Pfister, Alexander M. Rush

Neural Sequence-to-Sequence models have proven to be accurate and robust for many sequence prediction tasks, and have become the standard approach for automatic translation of text. The models work in a five stage blackbox process that involves encoding a source sequence to a vector space and then decoding out to a new target sequence. This process is now standard, but like many deep learning methods remains quite difficult to understand or debug. In this work, we present a visual analysis tool that allows interaction with a trained sequence-to-sequence model through each stage of the translation process. The aim is to identify which patterns have been learned and to detect model errors. We demonstrate the utility of our tool through several real-world large-scale sequence-to-sequence use cases.

* VAST - IEEE VIS 2018 

  Click for Model/Code and Paper
ConfusionFlow: A model-agnostic visualization for temporal analysis of classifier confusion

Oct 02, 2019
Andreas Hinterreiter, Peter Ruch, Holger Stitz, Martin Ennemoser, Jürgen Bernard, Hendrik Strobelt, Marc Streit

Classifiers are among the most widely used supervised machine learning algorithms. Many classification models exist, and choosing the right one for a given task is difficult. During model selection and debugging, data scientists need to asses classifier performance, evaluate the training behavior over time, and compare different models. Typically, this analysis is based on single-number performance measures such as accuracy. A more detailed evaluation of classifiers is possible by inspecting class errors. The confusion matrix is an established way for visualizing these class errors, but it was not designed with temporal or comparative analysis in mind. More generally, established performance analysis systems do not allow a combined temporal and comparative analysis of class-level information. To address this issue, we propose ConfusionFlow, an interactive, comparative visualization tool that combines the benefits of class confusion matrices with the visualization of performance characteristics over time. ConfusionFlow is model-agnostic and can be used to compare performances for different model types, model architectures, and/or training and test datasets. We demonstrate the usefulness of ConfusionFlow in the context of two practical problems: an analysis of the influence of network pruning on model errors, and a case study on instance selection strategies in active learning.


  Click for Model/Code and Paper
Visualizing and Understanding Generative Adversarial Networks (Extended Abstract)

Jan 29, 2019
David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman, Antonio Torralba

Generative Adversarial Networks (GANs) have achieved impressive results for many real-world applications. As an active research topic, many GAN variants have emerged with improvements in sample quality and training stability. However, visualization and understanding of GANs is largely missing. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to concepts with a segmentation-based network dissection method. We quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. Finally, we examine the contextual relationship between these units and their surrounding by inserting the discovered concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in the scene. We will open source our interactive tools to help researchers and practitioners better understand their models.

* In AAAI-19 workshop on Network Interpretability for Deep Learning arXiv admin note: substantial text overlap with arXiv:1811.10597 

  Click for Model/Code and Paper
GAN Dissection: Visualizing and Understanding Generative Adversarial Networks

Dec 08, 2018
David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman, Antonio Torralba

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

* 18 pages, 19 figures 

  Click for Model/Code and Paper
Progressive Data Science: Potential and Challenges

Dec 19, 2018
Cagatay Turkay, Nicola Pezzotti, Carsten Binnig, Hendrik Strobelt, Barbara Hammer, Daniel A. Keim, Jean-Daniel Fekete, Themis Palpanas, Yunhai Wang, Florin Rusu

Data science requires time-consuming iterative manual activities. In particular, activities such as data selection, preprocessing, transformation, and mining, highly depend on iterative trial-and-error processes that could be sped up significantly by providing quick feedback on the impact of changes. The idea of progressive data science is to compute the results of changes in a progressive manner, returning a first approximation of results quickly and allow iterative refinements until converging to a final result. Enabling the user to interact with the intermediate results allows an early detection of erroneous or suboptimal choices, the guided definition of modifications to the pipeline and their quick assessment. In this paper, we discuss the progressiveness challenges arising in different steps of the data science pipeline. We describe how changes in each step of the pipeline impact the subsequent steps and outline why progressive data science will help to make the process more effective. Computing progressive approximations of outcomes resulting from changes creates numerous research challenges, especially if the changes are made in the early steps of the pipeline. We discuss these challenges and outline first steps towards progressiveness, which, we argue, will ultimately help to significantly speed-up the overall data science process.


  Click for Model/Code and Paper
NeuNetS: An Automated Synthesis Engine for Neural Network Design

Jan 17, 2019
Atin Sood, Benjamin Elder, Benjamin Herta, Chao Xue, Costas Bekas, A. Cristiano I. Malossi, Debashish Saha, Florian Scheidegger, Ganesh Venkataraman, Gegi Thomas, Giovanni Mariani, Hendrik Strobelt, Horst Samulowitz, Martin Wistuba, Matteo Manica, Mihir Choudhury, Rong Yan, Roxana Istrate, Ruchir Puri, Tejaswini Pedapati

Application of neural networks to a vast variety of practical applications is transforming the way AI is applied in practice. Pre-trained neural network models available through APIs or capability to custom train pre-built neural network architectures with customer data has made the consumption of AI by developers much simpler and resulted in broad adoption of these complex AI models. While prebuilt network models exist for certain scenarios, to try and meet the constraints that are unique to each application, AI teams need to think about developing custom neural network architectures that can meet the tradeoff between accuracy and memory footprint to achieve the tight constraints of their unique use-cases. However, only a small proportion of data science teams have the skills and experience needed to create a neural network from scratch, and the demand far exceeds the supply. In this paper, we present NeuNetS : An automated Neural Network Synthesis engine for custom neural network design that is available as part of IBM's AI OpenScale's product. NeuNetS is available for both Text and Image domains and can build neural networks for specific tasks in a fraction of the time it takes today with human effort, and with accuracy similar to that of human-designed AI models.

* 14 pages, 12 figures. arXiv admin note: text overlap with arXiv:1806.00250 

  Click for Model/Code and Paper