Models, code, and papers for "Hengshuang Zhao":

GridMask Data Augmentation

Jan 14, 2020
Pengguang Chen, Shu Liu, Hengshuang Zhao, Jiaya Jia

We propose a novel data augmentation method `GridMask' in this paper. It utilizes information removal to achieve state-of-the-art results in a variety of computer vision tasks. We analyze the requirement of information dropping. Then we show limitation of existing information dropping algorithms and propose our structured method, which is simple and yet very effective. It is based on the deletion of regions of the input image. Our extensive experiments show that our method outperforms the latest AutoAugment, which is way more computationally expensive due to the use of reinforcement learning to find the best policies. On the ImageNet dataset for recognition, COCO2017 object detection, and on Cityscapes dataset for semantic segmentation, our method all notably improves performance over baselines. The extensive experiments manifest the effectiveness and generality of the new method.

  Click for Model/Code and Paper
Automatic Real-time Background Cut for Portrait Videos

Apr 28, 2017
Xiaoyong Shen, Ruixing Wang, Hengshuang Zhao, Jiaya Jia

We in this paper solve the problem of high-quality automatic real-time background cut for 720p portrait videos. We first handle the background ambiguity issue in semantic segmentation by proposing a global background attenuation model. A spatial-temporal refinement network is developed to further refine the segmentation errors in each frame and ensure temporal coherence in the segmentation map. We form an end-to-end network for training and testing. Each module is designed considering efficiency and accuracy. We build a portrait dataset, which includes 8,000 images with high-quality labeled map for training and testing. To further improve the performance, we build a portrait video dataset with 50 sequences to fine-tune video segmentation. Our framework benefits many video processing applications.

  Click for Model/Code and Paper
ICNet for Real-Time Semantic Segmentation on High-Resolution Images

Aug 20, 2018
Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia

We focus on the challenging task of real-time semantic segmentation in this paper. It finds many practical applications and yet is with fundamental difficulty of reducing a large portion of computation for pixel-wise label inference. We propose an image cascade network (ICNet) that incorporates multi-resolution branches under proper label guidance to address this challenge. We provide in-depth analysis of our framework and introduce the cascade feature fusion unit to quickly achieve high-quality segmentation. Our system yields real-time inference on a single GPU card with decent quality results evaluated on challenging datasets like Cityscapes, CamVid and COCO-Stuff.

* ECCV 2018 

  Click for Model/Code and Paper
SegStereo: Exploiting Semantic Information for Disparity Estimation

Jul 31, 2018
Guorun Yang, Hengshuang Zhao, Jianping Shi, Zhidong Deng, Jiaya Jia

Disparity estimation for binocular stereo images finds a wide range of applications. Traditional algorithms may fail on featureless regions, which could be handled by high-level clues such as semantic segments. In this paper, we suggest that appropriate incorporation of semantic cues can greatly rectify prediction in commonly-used disparity estimation frameworks. Our method conducts semantic feature embedding and regularizes semantic cues as the loss term to improve learning disparity. Our unified model SegStereo employs semantic features from segmentation and introduces semantic softmax loss, which helps improve the prediction accuracy of disparity maps. The semantic cues work well in both unsupervised and supervised manners. SegStereo achieves state-of-the-art results on KITTI Stereo benchmark and produces decent prediction on both CityScapes and FlyingThings3D datasets.

* Accepted to ECCV 2018 

  Click for Model/Code and Paper
Pyramid Scene Parsing Network

Apr 27, 2017
Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia

Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-region-based context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). Our global prior representation is effective to produce good quality results on the scene parsing task, while PSPNet provides a superior framework for pixel-level prediction tasks. The proposed approach achieves state-of-the-art performance on various datasets. It came first in ImageNet scene parsing challenge 2016, PASCAL VOC 2012 benchmark and Cityscapes benchmark. A single PSPNet yields new record of mIoU accuracy 85.4% on PASCAL VOC 2012 and accuracy 80.2% on Cityscapes.

* CVPR 2017 

  Click for Model/Code and Paper
Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation

Sep 23, 2019
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia

We achieve 3D semantic scene labeling by exploring semantic relation between each point and its contextual neighbors through edges. Besides an encoder-decoder branch for predicting point labels, we construct an edge branch to hierarchically integrate point features and generate edge features. To incorporate point features in the edge branch, we establish a hierarchical graph framework, where the graph is initialized from a coarse layer and gradually enriched along the point decoding process. For each edge in the final graph, we predict a label to indicate the semantic consistency of the two connected points to enhance point prediction. At different layers, edge features are also fed into the corresponding point module to integrate contextual information for message passing enhancement in local regions. The two branches interact with each other and cooperate in segmentation. Decent experimental results on several 3D semantic labeling datasets demonstrate the effectiveness of our work.

* Accepted by ICCV 2019 

  Click for Model/Code and Paper
Region Refinement Network for Salient Object Detection

Jun 27, 2019
Zhuotao Tian, Hengshuang Zhao, Michelle Shu, Jiaze Wang, Ruiyu Li, Xiaoyong Shen, Jiaya Jia

Albeit intensively studied, false prediction and unclear boundaries are still major issues of salient object detection. In this paper, we propose a Region Refinement Network (RRN), which recurrently filters redundant information and explicitly models boundary information for saliency detection. Different from existing refinement methods, we propose a Region Refinement Module (RRM) that optimizes salient region prediction by incorporating supervised attention masks in the intermediate refinement stages. The module only brings a minor increase in model size and yet significantly reduces false predictions from the background. To further refine boundary areas, we propose a Boundary Refinement Loss (BRL) that adds extra supervision for better distinguishing foreground from background. BRL is parameter free and easy to train. We further observe that BRL helps retain the integrity in prediction by refining the boundary. Extensive experiments on saliency detection datasets show that our refinement module and loss bring significant improvement to the baseline and can be easily applied to different frameworks. We also demonstrate that our proposed model generalizes well to portrait segmentation and shadow detection tasks.

  Click for Model/Code and Paper
UPSNet: A Unified Panoptic Segmentation Network

Jan 12, 2019
Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, Raquel Urtasun

In this paper, we propose a unified panoptic segmentation network (UPSNet) for tackling the newly proposed panoptic segmentation task. On top of a single backbone residual network, we first design a deformable convolution based semantic segmentation head and a Mask R-CNN style instance segmentation head which solve these two subtasks simultaneously. More importantly, we introduce a parameter-free panoptic head which solves the panoptic segmentation via pixel-wise classification. It first leverages the logits from the previous two heads and then innovatively expands the representation for enabling prediction of an extra unknown class which helps better resolve the conflicts between semantic and instance segmentation. Additionally, it handles the challenge caused by the varying number of instances and permits back propagation to the bottom modules in an end-to-end manner. Extensive experimental results on Cityscapes, COCO and our internal dataset demonstrate that our UPSNet achieves state-of-the-art performance with much faster inference.

* Technical report 

  Click for Model/Code and Paper