Models, code, and papers for "Henry W. W. Potts":

Impact of Argument Type and Concerns in Argumentation with a Chatbot

May 02, 2019
Lisa A. Chalaguine, Anthony Hunter, Fiona L. Hamilton, Henry W. W. Potts

Conversational agents, also known as chatbots, are versatile tools that have the potential of being used in dialogical argumentation. They could possibly be deployed in tasks such as persuasion for behaviour change (e.g. persuading people to eat more fruit, to take regular exercise, etc.) However, to achieve this, there is a need to develop methods for acquiring appropriate arguments and counterargument that reflect both sides of the discussion. For instance, to persuade someone to do regular exercise, the chatbot needs to know counterarguments that the user might have for not doing exercise. To address this need, we present methods for acquiring arguments and counterarguments, and importantly, meta-level information that can be useful for deciding when arguments can be used during an argumentation dialogue. We evaluate these methods in studies with participants and show how harnessing these methods in a chatbot can make it more persuasive.


  Click for Model/Code and Paper
Argument Harvesting Using Chatbots

May 11, 2018
Lisa A. Chalaguine, Anthony Hunter, Henry W. W. Potts, Fiona L. Hamilton

Much research in computational argumentation assumes that arguments and counterarguments can be obtained in some way. Yet, to improve and apply models of argument, we need methods for acquiring them. Current approaches include argument mining from text, hand coding of arguments by researchers, or generating arguments from knowledge bases. In this paper, we propose a new approach, which we call argument harvesting, that uses a chatbot to enter into a dialogue with a participant to get arguments and counterarguments from him or her. Because it is automated, the chatbot can be used repeatedly in many dialogues, and thereby it can generate a large corpus. We describe the architecture of the chatbot, provide methods for managing a corpus of arguments and counterarguments, and an evaluation of our approach in a case study concerning attitudes of women to participation in sport.


  Click for Model/Code and Paper
Domain Modelling in Computational Persuasion for Behaviour Change in Healthcare

Feb 27, 2018
Lisa Chalaguine, Emmanuel Hadoux, Fiona Hamilton, Andrew Hayward, Anthony Hunter, Sylwia Polberg, Henry W. W. Potts

The aim of behaviour change is to help people to change aspects of their behaviour for the better (e.g., to decrease calorie intake, to drink in moderation, to take more exercise, to complete a course of antibiotics once started, etc.). In current persuasion technology for behaviour change, the emphasis is on helping people to explore their issues (e.g., through questionnaires or game playing) or to remember to follow a behaviour change plan (e.g., diaries and email reminders). However, recent developments in computational persuasion are leading to an argument-centric approach to persuasion that can potentially be harnessed in behaviour change applications. In this paper, we review developments in computational persuasion, and then focus on domain modelling as a key component. We present a multi-dimensional approach to domain modelling. At the core of this proposal is an ontology which provides a representation of key factors, in particular kinds of belief, which we have identified in the behaviour change literature as being important in diverse behaviour change initiatives. Our proposal for domain modelling is intended to facilitate the acquisition and representation of the arguments that can be used in persuasion dialogues, together with meta-level information about them which can be used by the persuader to make strategic choices of argument to present.

* 32 pages, 9 figures, draft journal paper 

  Click for Model/Code and Paper