Word embeddings are a key component of high-performing natural language processing (NLP) systems, but it remains a challenge to learn good representations for novel words on the fly, i.e., for words that did not occur in the training data. The general problem setting is that word embeddings are induced on an unlabeled training corpus and then a model is trained that embeds novel words into this induced embedding space. Currently, two approaches for learning embeddings of novel words exist: (i) learning an embedding from the novel word's surface-form (e.g., subword n-grams) and (ii) learning an embedding from the context in which it occurs. In this paper, we propose an architecture that leverages both sources of information - surface-form and context - and show that it results in large increases in embedding quality. Our architecture obtains state-of-the-art results on the Definitional Nonce and Contextual Rare Words datasets. As input, we only require an embedding set and an unlabeled corpus for training our architecture to produce embeddings appropriate for the induced embedding space. Thus, our model can easily be integrated into any existing NLP system and enhance its capability to handle novel words.

* AAAI 2019
Click to Read Paper
This paper describes the CIS slot filling system for the TAC Cold Start evaluations 2015. It extends and improves the system we have built for the evaluation last year. This paper mainly describes the changes to our last year's system. Especially, it focuses on the coreference and classification component. For coreference, we have performed several analysis and prepared a resource to simplify our end-to-end system and improve its runtime. For classification, we propose to use neural networks. We have trained convolutional and recurrent neural networks and combined them with traditional evaluation methods, namely patterns and support vector machines. Our runs for the 2015 evaluation have been designed to directly assess the effect of each network on the end-to-end performance of the system. The CIS system achieved rank 3 of all slot filling systems participating in the task.

* TAC KBP 2015
Click to Read Paper
Levy, S{\o}gaard and Goldberg's (2017) S-ID (sentence ID) method applies word2vec on tuples containing a sentence ID and a word from the sentence. It has been shown to be a strong baseline for learning multilingual embeddings. Inspired by recent work on concept based embedding learning we propose SC-ID, an extension to S-ID: given a sentence aligned corpus, we use sampling to extract concepts that are then processed in the same manner as S-IDs. We perform experiments on the Parallel Bible Corpus across 1000+ languages and show that SC-ID yields up to 6% performance increase in a word translation task. In addition, we provide evidence that SC-ID is easily and widely applicable by reporting competitive results across 8 tasks on a EuroParl based corpus.

Click to Read Paper
Knowledge bases (KBs) are paramount in NLP. We employ multiview learning for increasing accuracy and coverage of entity type information in KBs. We rely on two metaviews: language and representation. For language, we consider high-resource and low-resource languages from Wikipedia. For representation, we consider representations based on the context distribution of the entity (i.e., on its embedding), on the entity's name (i.e., on its surface form) and on its description in Wikipedia. The two metaviews language and representation can be freely combined: each pair of language and representation (e.g., German embedding, English description, Spanish name) is a distinct view. Our experiments on entity typing with fine-grained classes demonstrate the effectiveness of multiview learning. We release MVET, a large multiview - and, in particular, multilingual - entity typing dataset we created. Mono- and multilingual fine-grained entity typing systems can be evaluated on this dataset.

* 7 pages, Accepted at EMNLP 2018
Click to Read Paper
Neural state-of-the-art sequence-to-sequence (seq2seq) models often do not perform well for small training sets. We address paradigm completion, the morphological task of, given a partial paradigm, generating all missing forms. We propose two new methods for the minimal-resource setting: (i) Paradigm transduction: Since we assume only few paradigms available for training, neural seq2seq models are able to capture relationships between paradigm cells, but are tied to the idiosyncracies of the training set. Paradigm transduction mitigates this problem by exploiting the input subset of inflected forms at test time. (ii) Source selection with high precision (SHIP): Multi-source models which learn to automatically select one or multiple sources to predict a target inflection do not perform well in the minimal-resource setting. SHIP is an alternative to identify a reliable source if training data is limited. On a 52-language benchmark dataset, we outperform the previous state of the art by up to 9.71% absolute accuracy.

* Accepted to EMNLP 2018
Click to Read Paper
We introduce globally normalized convolutional neural networks for joint entity classification and relation extraction. In particular, we propose a way to utilize a linear-chain conditional random field output layer for predicting entity types and relations between entities at the same time. Our experiments show that global normalization outperforms a locally normalized softmax layer on a benchmark dataset.

* EMNLP 2017
Click to Read Paper
Recurrent neural networks (RNNs) are temporal networks and cumulative in nature that have shown promising results in various natural language processing tasks. Despite their success, it still remains a challenge to understand their hidden behavior. In this work, we analyze and interpret the cumulative nature of RNN via a proposed technique named as Layer-wIse-Semantic-Accumulation (LISA) for explaining decisions and detecting the most likely (i.e., saliency) patterns that the network relies on while decision making. We demonstrate (1) LISA: "How an RNN accumulates or builds semantics during its sequential processing for a given text example and expected response" (2) Example2pattern: "How the saliency patterns look like for each category in the data according to the network in decision making". We analyse the sensitiveness of RNNs about different inputs to check the increase or decrease in prediction scores and further extract the saliency patterns learned by the network. We employ two relation classification datasets: SemEval 10 Task 8 and TAC KBP Slot Filling to explain RNN predictions via the LISA and example2pattern.

* 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP2018) workshop on Analyzing and Interpreting Neural Networks for NLP (BlackBoxNLP)
Click to Read Paper
In this paper, we demonstrate the importance of coreference resolution for natural language processing on the example of the TAC Slot Filling shared task. We illustrate the strengths and weaknesses of automatic coreference resolution systems and provide experimental results to show that they improve performance in the slot filling end-to-end setting. Finally, we publish KBPchains, a resource containing automatically extracted coreference chains from the TAC source corpus in order to support other researchers working on this topic.

* 5 pages
Click to Read Paper
In NLP, convolution neural networks (CNNs) have benefited less than recurrent neural networks (RNNs) from attention mechanisms. We hypothesize that this is because attention in CNNs has been mainly implemented as attentive pooling (i.e., it is applied to pooling) rather than as attentive convolution (i.e., it is integrated into convolution). Convolution is the differentiator of CNNs in that it can powerfully model the higher-level representation of a word by taking into account its local fixed-size context in input text $t^x$. In this work, we propose an attentive convolution network, AttentiveConvNet. It extends the context scope of the convolution operation, deriving higher-level features for a word not only from local context, but also from information extracted from nonlocal context by the attention mechanism commonly used in RNNs. This nonlocal context can come (i) from parts of the input text $t^x$ that are distant or (ii) from a second input text, the context text $t^y$. In an evaluation on sentence relation classification (textual entailment and answer sentence selection) and text classification, experiments demonstrate that AttentiveConvNet has state-of-the-art performance and outperforms RNN/CNN variants with and without attention.

* 12 pages, 2 figures
Click to Read Paper
We present SuperPivot, an analysis method for low-resource languages that occur in a superparallel corpus, i.e., in a corpus that contains an order of magnitude more languages than parallel corpora currently in use. We show that SuperPivot performs well for the crosslingual analysis of the linguistic phenomenon of tense. We produce analysis results for more than 1000 languages, conducting - to the best of our knowledge - the largest crosslingual computational study performed to date. We extend existing methodology for leveraging parallel corpora for typological analysis by overcoming a limiting assumption of earlier work: We only require that a linguistic feature is overtly marked in a few of thousands of languages as opposed to requiring that it be marked in all languages under investigation.

* Extended version of EMNLP 2017
Click to Read Paper
We present a semi-supervised way of training a character-based encoder-decoder recurrent neural network for morphological reinflection, the task of generating one inflected word form from another. This is achieved by using unlabeled tokens or random strings as training data for an autoencoding task, adapting a network for morphological reinflection, and performing multi-task training. We thus use limited labeled data more effectively, obtaining up to 9.9% improvement over state-of-the-art baselines for 8 different languages.

* Accepted at SCLeM 2017
Click to Read Paper
Much like sentences are composed of words, words themselves are composed of smaller units. For example, the English word questionably can be analyzed as question+able+ly. However, this structural decomposition of the word does not directly give us a semantic representation of the word's meaning. Since morphology obeys the principle of compositionality, the semantics of the word can be systematically derived from the meaning of its parts. In this work, we propose a novel probabilistic model of word formation that captures both the analysis of a word w into its constituents segments and the synthesis of the meaning of w from the meanings of those segments. Our model jointly learns to segment words into morphemes and compose distributional semantic vectors of those morphemes. We experiment with the model on English CELEX data and German DerivBase (Zeller et al., 2013) data. We show that jointly modeling semantics increases both segmentation accuracy and morpheme F1 by between 3% and 5%. Additionally, we investigate different models of vector composition, showing that recurrent neural networks yield an improvement over simple additive models. Finally, we study the degree to which the representations correspond to a linguist's notion of morphological productivity.

* TACL 2017 (presented at ACL 2017)
Click to Read Paper
Entities are essential elements of natural language. In this paper, we present methods for learning multi-level representations of entities on three complementary levels: character (character patterns in entity names extracted, e.g., by neural networks), word (embeddings of words in entity names) and entity (entity embeddings). We investigate state-of-the-art learning methods on each level and find large differences, e.g., for deep learning models, traditional ngram features and the subword model of fasttext (Bojanowski et al., 2016) on the character level; for word2vec (Mikolov et al., 2013) on the word level; and for the order-aware model wang2vec (Ling et al., 2015a) on the entity level. We confirm experimentally that each level of representation contributes complementary information and a joint representation of all three levels improves the existing embedding based baseline for fine-grained entity typing by a large margin. Additionally, we show that adding information from entity descriptions further improves multi-level representations of entities.

* 13 pages, in EACL 2017
Click to Read Paper
Neural networks with attention have proven effective for many natural language processing tasks. In this paper, we develop attention mechanisms for uncertainty detection. In particular, we generalize standardly used attention mechanisms by introducing external attention and sequence-preserving attention. These novel architectures differ from standard approaches in that they use external resources to compute attention weights and preserve sequence information. We compare them to other configurations along different dimensions of attention. Our novel architectures set the new state of the art on a Wikipedia benchmark dataset and perform similar to the state-of-the-art model on a biomedical benchmark which uses a large set of linguistic features.

* accepted at EACL 2017
Click to Read Paper
This work studies comparatively two typical sentence matching tasks: textual entailment (TE) and answer selection (AS), observing that weaker phrase alignments are more critical in TE, while stronger phrase alignments deserve more attention in AS. The key to reach this observation lies in phrase detection, phrase representation, phrase alignment, and more importantly how to connect those aligned phrases of different matching degrees with the final classifier. Prior work (i) has limitations in phrase generation and representation, or (ii) conducts alignment at word and phrase levels by handcrafted features or (iii) utilizes a single framework of alignment without considering the characteristics of specific tasks, which limits the framework's effectiveness across tasks. We propose an architecture based on Gated Recurrent Unit that supports (i) representation learning of phrases of arbitrary granularity and (ii) task-specific attentive pooling of phrase alignments between two sentences. Experimental results on TE and AS match our observation and show the effectiveness of our approach.

* EACL'2017 long paper. arXiv admin note: substantial text overlap with arXiv:1604.06896
Click to Read Paper
We introduce a new methodology for intrinsic evaluation of word representations. Specifically, we identify four fundamental criteria based on the characteristics of natural language that pose difficulties to NLP systems; and develop tests that directly show whether or not representations contain the subspaces necessary to satisfy these criteria. Current intrinsic evaluations are mostly based on the overall similarity or full-space similarity of words and thus view vector representations as points. We show the limits of these point-based intrinsic evaluations. We apply our evaluation methodology to the comparison of a count vector model and several neural network models and demonstrate important properties of these models.

* Long paper accepted in ACL2016
Click to Read Paper
This paper addresses the problem of corpus-level entity typing, i.e., inferring from a large corpus that an entity is a member of a class such as "food" or "artist". The application of entity typing we are interested in is knowledge base completion, specifically, to learn which classes an entity is a member of. We propose FIGMENT to tackle this problem. FIGMENT is embedding-based and combines (i) a global model that scores based on aggregated contextual information of an entity and (ii) a context model that first scores the individual occurrences of an entity and then aggregates the scores. In our evaluation, FIGMENT strongly outperforms an approach to entity typing that relies on relations obtained by an open information extraction system.

* Accepted at EMNLP2015, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
Click to Read Paper
This work studies comparatively two typical sentence pair classification tasks: textual entailment (TE) and answer selection (AS), observing that phrase alignments of different intensities contribute differently in these tasks. We address the problems of identifying phrase alignments of flexible granularity and pooling alignments of different intensities for these tasks. Examples for flexible granularity are alignments between two single words, between a single word and a phrase and between a short phrase and a long phrase. By intensity we roughly mean the degree of match, it ranges from identity over surface-form co-occurrence, rephrasing and other semantic relatedness to unrelated words as in lots of parenthesis text. Prior work (i) has limitations in phrase generation and representation, or (ii) conducts alignment at word and phrase levels by handcrafted features or (iii) utilizes a single attention mechanism over alignment intensities without considering the characteristics of specific tasks, which limits the system's effectiveness across tasks. We propose an architecture based on Gated Recurrent Unit that supports (i) representation learning of phrases of arbitrary granularity and (ii) task-specific focusing of phrase alignments between two sentences by attention pooling. Experimental results on TE and AS match our observation and are state-of-the-art.

* 10 pages, 5 figures
Click to Read Paper
Morphological reinflection is the task of generating a target form given a source form, a source tag and a target tag. We propose a new way of modeling this task with neural encoder-decoder models. Our approach reduces the amount of required training data for this architecture and achieves state-of-the-art results, making encoder-decoder models applicable to morphological reinflection even for low-resource languages. We further present a new automatic correction method for the outputs based on edit trees.

* Accepted at ACL 2016
Click to Read Paper
This work, concerning paraphrase identification task, on one hand contributes to expanding deep learning embeddings to include continuous and discontinuous linguistic phrases. On the other hand, it comes up with a new scheme TF-KLD-KNN to learn the discriminative weights of words and phrases specific to paraphrase task, so that a weighted sum of embeddings can represent sentences more effectively. Based on these two innovations we get competitive state-of-the-art performance on paraphrase identification.

* NAACL'2015
Click to Read Paper