Models, code, and papers for "Honglak Lee":

An efficient framework for learning sentence representations

Mar 07, 2018
Lajanugen Logeswaran, Honglak Lee

In this work we propose a simple and efficient framework for learning sentence representations from unlabelled data. Drawing inspiration from the distributional hypothesis and recent work on learning sentence representations, we reformulate the problem of predicting the context in which a sentence appears as a classification problem. Given a sentence and its context, a classifier distinguishes context sentences from other contrastive sentences based on their vector representations. This allows us to efficiently learn different types of encoding functions, and we show that the model learns high-quality sentence representations. We demonstrate that our sentence representations outperform state-of-the-art unsupervised and supervised representation learning methods on several downstream NLP tasks that involve understanding sentence semantics while achieving an order of magnitude speedup in training time.

* ICLR 2018 

  Click for Model/Code and Paper
Learning Invariant Representations with Local Transformations

Jun 27, 2012
Kihyuk Sohn, Honglak Lee

Learning invariant representations is an important problem in machine learning and pattern recognition. In this paper, we present a novel framework of transformation-invariant feature learning by incorporating linear transformations into the feature learning algorithms. For example, we present the transformation-invariant restricted Boltzmann machine that compactly represents data by its weights and their transformations, which achieves invariance of the feature representation via probabilistic max pooling. In addition, we show that our transformation-invariant feature learning framework can also be extended to other unsupervised learning methods, such as autoencoders or sparse coding. We evaluate our method on several image classification benchmark datasets, such as MNIST variations, CIFAR-10, and STL-10, and show competitive or superior classification performance when compared to the state-of-the-art. Furthermore, our method achieves state-of-the-art performance on phone classification tasks with the TIMIT dataset, which demonstrates wide applicability of our proposed algorithms to other domains.

* Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012) 

  Click for Model/Code and Paper
Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification

Jun 21, 2016
Yuting Zhang, Kibok Lee, Honglak Lee

Unsupervised learning and supervised learning are key research topics in deep learning. However, as high-capacity supervised neural networks trained with a large amount of labels have achieved remarkable success in many computer vision tasks, the availability of large-scale labeled images reduced the significance of unsupervised learning. Inspired by the recent trend toward revisiting the importance of unsupervised learning, we investigate joint supervised and unsupervised learning in a large-scale setting by augmenting existing neural networks with decoding pathways for reconstruction. First, we demonstrate that the intermediate activations of pretrained large-scale classification networks preserve almost all the information of input images except a portion of local spatial details. Then, by end-to-end training of the entire augmented architecture with the reconstructive objective, we show improvement of the network performance for supervised tasks. We evaluate several variants of autoencoders, including the recently proposed "what-where" autoencoder that uses the encoder pooling switches, to study the importance of the architecture design. Taking the 16-layer VGGNet trained under the ImageNet ILSVRC 2012 protocol as a strong baseline for image classification, our methods improve the validation-set accuracy by a noticeable margin.

* PMLR 48:612-621, 2016 
* International Conference on Machine Learning (ICML), 2016 

  Click for Model/Code and Paper
A Simple Randomization Technique for Generalization in Deep Reinforcement Learning

Oct 11, 2019
Kimin Lee, Kibok Lee, Jinwoo Shin, Honglak Lee

Deep reinforcement learning (RL) agents often fail to generalize to unseen environments (yet semantically similar to trained agents), particularly when they are trained on high-dimensional state spaces, such as images. In this paper, we propose a simple technique to improve a generalization ability of deep RL agents by introducing a randomized (convolutional) neural network that randomly perturbs input observations. It enables trained agents to adapt to new domains by learning robust features invariant across varied and randomized environments. Furthermore, we consider an inference method based on the Monte Carlo approximation to reduce the variance induced by this randomization. We demonstrate the superiority of our method across 2D CoinRun, 3D DeepMind Lab exploration and 3D robotics control tasks: it significantly outperforms various regularization and data augmentation methods for the same purpose.

* In NeurIPS Workshop on Deep RL, 2019 / First two authors are equally contributed 

  Click for Model/Code and Paper
Incremental Learning with Unlabeled Data in the Wild

Mar 29, 2019
Kibok Lee, Kimin Lee, Jinwoo Shin, Honglak Lee

Deep neural networks are known to suffer from catastrophic forgetting in class-incremental learning, where the performance on previous tasks drastically degrades when learning a new task. To alleviate this effect, we propose to leverage a continuous and large stream of unlabeled data in the wild. In particular, to leverage such transient external data effectively, we design a novel class-incremental learning scheme with (a) a new distillation loss, termed global distillation, (b) a learning strategy to avoid overfitting to the most recent task, and (c) a sampling strategy for the desired external data. Our experimental results on various datasets, including CIFAR and ImageNet, demonstrate the superiority of the proposed methods over prior methods, particularly when a stream of unlabeled data is accessible: we achieve up to 9.3% of relative performance improvement compared to the state-of-the-art method.

  Click for Model/Code and Paper
Content preserving text generation with attribute controls

Nov 03, 2018
Lajanugen Logeswaran, Honglak Lee, Samy Bengio

In this work, we address the problem of modifying textual attributes of sentences. Given an input sentence and a set of attribute labels, we attempt to generate sentences that are compatible with the conditioning information. To ensure that the model generates content compatible sentences, we introduce a reconstruction loss which interpolates between auto-encoding and back-translation loss components. We propose an adversarial loss to enforce generated samples to be attribute compatible and realistic. Through quantitative, qualitative and human evaluations we demonstrate that our model is capable of generating fluent sentences that better reflect the conditioning information compared to prior methods. We further demonstrate that the model is capable of simultaneously controlling multiple attributes.

* NIPS 2018 

  Click for Model/Code and Paper
Hierarchical Reinforcement Learning for Zero-shot Generalization with Subtask Dependencies

Nov 02, 2018
Sungryull Sohn, Junhyuk Oh, Honglak Lee

We introduce a new RL problem where the agent is required to generalize to a previously-unseen environment characterized by a subtask graph which describes a set of subtasks and their dependencies. Unlike existing hierarchical multitask RL approaches that explicitly describe what the agent should do at a high level, our problem only describes properties of subtasks and relationships among them, which requires the agent to perform complex reasoning to find the optimal subtask to execute. To solve this problem, we propose a neural subtask graph solver (NSGS) which encodes the subtask graph using a recursive neural network embedding. To overcome the difficulty of training, we propose a novel non-parametric gradient-based policy, graph reward propagation, to pre-train our NSGS agent and further finetune it through actor-critic method. The experimental results on two 2D visual domains show that our agent can perform complex reasoning to find a near-optimal way of executing the subtask graph and generalize well to the unseen subtask graphs. In addition, we compare our agent with a Monte-Carlo tree search (MCTS) method showing that our method is much more efficient than MCTS, and the performance of NSGS can be further improved by combining it with MCTS.

* In NIPS 2018 

  Click for Model/Code and Paper
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks

Oct 27, 2018
Kimin Lee, Kibok Lee, Honglak Lee, Jinwoo Shin

Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially is a fundamental requirement for deploying a good classifier in many real-world machine learning applications. However, deep neural networks with the softmax classifier are known to produce highly overconfident posterior distributions even for such abnormal samples. In this paper, we propose a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier. We obtain the class conditional Gaussian distributions with respect to (low- and upper-level) features of the deep models under Gaussian discriminant analysis, which result in a confidence score based on the Mahalanobis distance. While most prior methods have been evaluated for detecting either out-of-distribution or adversarial samples, but not both, the proposed method achieves the state-of-the-art performances for both cases in our experiments. Moreover, we found that our proposed method is more robust in harsh cases, e.g., when the training dataset has noisy labels or small number of samples. Finally, we show that the proposed method enjoys broader usage by applying it to class-incremental learning: whenever out-of-distribution samples are detected, our classification rule can incorporate new classes well without further training deep models.

* Accepted in NIPS 2018 

  Click for Model/Code and Paper
Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples

Feb 23, 2018
Kimin Lee, Honglak Lee, Kibok Lee, Jinwoo Shin

The problem of detecting whether a test sample is from in-distribution (i.e., training distribution by a classifier) or out-of-distribution sufficiently different from it arises in many real-world machine learning applications. However, the state-of-art deep neural networks are known to be highly overconfident in their predictions, i.e., do not distinguish in- and out-of-distributions. Recently, to handle this issue, several threshold-based detectors have been proposed given pre-trained neural classifiers. However, the performance of prior works highly depends on how to train the classifiers since they only focus on improving inference procedures. In this paper, we develop a novel training method for classifiers so that such inference algorithms can work better. In particular, we suggest two additional terms added to the original loss (e.g., cross entropy). The first one forces samples from out-of-distribution less confident by the classifier and the second one is for (implicitly) generating most effective training samples for the first one. In essence, our method jointly trains both classification and generative neural networks for out-of-distribution. We demonstrate its effectiveness using deep convolutional neural networks on various popular image datasets.

  Click for Model/Code and Paper
Sentence Ordering and Coherence Modeling using Recurrent Neural Networks

Dec 22, 2017
Lajanugen Logeswaran, Honglak Lee, Dragomir Radev

Modeling the structure of coherent texts is a key NLP problem. The task of coherently organizing a given set of sentences has been commonly used to build and evaluate models that understand such structure. We propose an end-to-end unsupervised deep learning approach based on the set-to-sequence framework to address this problem. Our model strongly outperforms prior methods in the order discrimination task and a novel task of ordering abstracts from scientific articles. Furthermore, our work shows that useful text representations can be obtained by learning to order sentences. Visualizing the learned sentence representations shows that the model captures high-level logical structure in paragraphs. Our representations perform comparably to state-of-the-art pre-training methods on sentence similarity and paraphrase detection tasks.

  Click for Model/Code and Paper
Value Prediction Network

Nov 06, 2017
Junhyuk Oh, Satinder Singh, Honglak Lee

This paper proposes a novel deep reinforcement learning (RL) architecture, called Value Prediction Network (VPN), which integrates model-free and model-based RL methods into a single neural network. In contrast to typical model-based RL methods, VPN learns a dynamics model whose abstract states are trained to make option-conditional predictions of future values (discounted sum of rewards) rather than of future observations. Our experimental results show that VPN has several advantages over both model-free and model-based baselines in a stochastic environment where careful planning is required but building an accurate observation-prediction model is difficult. Furthermore, VPN outperforms Deep Q-Network (DQN) on several Atari games even with short-lookahead planning, demonstrating its potential as a new way of learning a good state representation.

* NIPS 2017 

  Click for Model/Code and Paper
Dependency Sensitive Convolutional Neural Networks for Modeling Sentences and Documents

Nov 08, 2016
Rui Zhang, Honglak Lee, Dragomir Radev

The goal of sentence and document modeling is to accurately represent the meaning of sentences and documents for various Natural Language Processing tasks. In this work, we present Dependency Sensitive Convolutional Neural Networks (DSCNN) as a general-purpose classification system for both sentences and documents. DSCNN hierarchically builds textual representations by processing pretrained word embeddings via Long Short-Term Memory networks and subsequently extracting features with convolution operators. Compared with existing recursive neural models with tree structures, DSCNN does not rely on parsers and expensive phrase labeling, and thus is not restricted to sentence-level tasks. Moreover, unlike other CNN-based models that analyze sentences locally by sliding windows, our system captures both the dependency information within each sentence and relationships across sentences in the same document. Experiment results demonstrate that our approach is achieving state-of-the-art performance on several tasks, including sentiment analysis, question type classification, and subjectivity classification.

* NAACL2016 

  Click for Model/Code and Paper
Deep Learning for Detecting Robotic Grasps

Aug 21, 2014
Ian Lenz, Honglak Lee, Ashutosh Saxena

We consider the problem of detecting robotic grasps in an RGB-D view of a scene containing objects. In this work, we apply a deep learning approach to solve this problem, which avoids time-consuming hand-design of features. This presents two main challenges. First, we need to evaluate a huge number of candidate grasps. In order to make detection fast, as well as robust, we present a two-step cascaded structure with two deep networks, where the top detections from the first are re-evaluated by the second. The first network has fewer features, is faster to run, and can effectively prune out unlikely candidate grasps. The second, with more features, is slower but has to run only on the top few detections. Second, we need to handle multimodal inputs well, for which we present a method to apply structured regularization on the weights based on multimodal group regularization. We demonstrate that our method outperforms the previous state-of-the-art methods in robotic grasp detection, and can be used to successfully execute grasps on two different robotic platforms.

* Current version was accepted to IJRR Special Issue on Robot Vision 2014 Workshop version accepted to ICLR 2013. Conference version accepted to RSS 2013 

  Click for Model/Code and Paper
High-Fidelity Synthesis with Disentangled Representation

Jan 13, 2020
Wonkwang Lee, Donggyun Kim, Seunghoon Hong, Honglak Lee

Learning disentangled representation of data without supervision is an important step towards improving the interpretability of generative models. Despite recent advances in disentangled representation learning, existing approaches often suffer from the trade-off between representation learning and generation performance i.e. improving generation quality sacrifices disentanglement performance). We propose an Information-Distillation Generative Adversarial Network (ID-GAN), a simple yet generic framework that easily incorporates the existing state-of-the-art models for both disentanglement learning and high-fidelity synthesis. Our method learns disentangled representation using VAE-based models, and distills the learned representation with an additional nuisance variable to the separate GAN-based generator for high-fidelity synthesis. To ensure that both generative models are aligned to render the same generative factors, we further constrain the GAN generator to maximize the mutual information between the learned latent code and the output. Despite the simplicity, we show that the proposed method is highly effective, achieving comparable image generation quality to the state-of-the-art methods using the disentangled representation. We also show that the proposed decomposition leads to an efficient and stable model design, and we demonstrate photo-realistic high-resolution image synthesis results (1024x1024 pixels) for the first time using the disentangled representations.

  Click for Model/Code and Paper
Consistency Regularization for Generative Adversarial Networks

Oct 26, 2019
Han Zhang, Zizhao Zhang, Augustus Odena, Honglak Lee

Generative Adversarial Networks (GANs) are known to be difficult to train, despite considerable research effort. Several regularization techniques for stabilizing training have been proposed, but they introduce non-trivial computational overheads and interact poorly with existing techniques like spectral normalization. In this work, we propose a simple, effective training stabilizer based on the notion of consistency regularization---a popular technique in the semi-supervised learning literature. In particular, we augment data passing into the GAN discriminator and penalize the sensitivity of the discriminator to these augmentations. We conduct a series of experiments to demonstrate that consistency regularization works effectively with spectral normalization and various GAN architectures, loss functions and optimizer settings. Our method achieves the best FID scores for unconditional image generation compared to other regularization methods on CIFAR-10 and CelebA. Moreover, Our consistency regularized GAN (CR-GAN) improves state-of-the-art FID scores for conditional generation from 14.73 to 11.67 on CIFAR-10 and from 8.73 to 6.66 on ImageNet-2012.

  Click for Model/Code and Paper
Meta Reinforcement Learning with Autonomous Inference of Subtask Dependencies

Jan 01, 2020
Sungryull Sohn, Hyunjae Woo, Jongwook Choi, Honglak Lee

We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph which describes a set of subtasks and their dependencies that are unknown to the agent. The agent needs to quickly adapt to the task over few episodes during adaptation phase to maximize the return in the test phase. Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference(MSGI), which infers the latent parameter of the task by interacting with the environment and maximizes the return given the latent parameter. To facilitate learning, we adopt an intrinsic reward inspired by upper confidence bound (UCB) that encourages efficient exploration. Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter, and to adapt more efficiently than existing meta RL and hierarchical RL methods.

* In ICLR 2020 

  Click for Model/Code and Paper
Similarity of Neural Network Representations Revisited

May 14, 2019
Simon Kornblith, Mohammad Norouzi, Honglak Lee, Geoffrey Hinton

Recent work has sought to understand the behavior of neural networks by comparing representations between layers and between different trained models. We examine methods for comparing neural network representations based on canonical correlation analysis (CCA). We show that CCA belongs to a family of statistics for measuring multivariate similarity, but that neither CCA nor any other statistic that is invariant to invertible linear transformation can measure meaningful similarities between representations of higher dimension than the number of data points. We introduce a similarity index that measures the relationship between representational similarity matrices and does not suffer from this limitation. This similarity index is equivalent to centered kernel alignment (CKA) and is also closely connected to CCA. Unlike CCA, CKA can reliably identify correspondences between representations in networks trained from different initializations.

* Accepted to ICML 2019 

  Click for Model/Code and Paper
Generative Adversarial Self-Imitation Learning

Dec 03, 2018
Yijie Guo, Junhyuk Oh, Satinder Singh, Honglak Lee

This paper explores a simple regularizer for reinforcement learning by proposing Generative Adversarial Self-Imitation Learning (GASIL), which encourages the agent to imitate past good trajectories via generative adversarial imitation learning framework. Instead of directly maximizing rewards, GASIL focuses on reproducing past good trajectories, which can potentially make long-term credit assignment easier when rewards are sparse and delayed. GASIL can be easily combined with any policy gradient objective by using GASIL as a learned shaped reward function. Our experimental results show that GASIL improves the performance of proximal policy optimization on 2D Point Mass and MuJoCo environments with delayed reward and stochastic dynamics.

  Click for Model/Code and Paper
Data-Efficient Hierarchical Reinforcement Learning

Oct 05, 2018
Ofir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine

Hierarchical reinforcement learning (HRL) is a promising approach to extend traditional reinforcement learning (RL) methods to solve more complex tasks. Yet, the majority of current HRL methods require careful task-specific design and on-policy training, making them difficult to apply in real-world scenarios. In this paper, we study how we can develop HRL algorithms that are general, in that they do not make onerous additional assumptions beyond standard RL algorithms, and efficient, in the sense that they can be used with modest numbers of interaction samples, making them suitable for real-world problems such as robotic control. For generality, we develop a scheme where lower-level controllers are supervised with goals that are learned and proposed automatically by the higher-level controllers. To address efficiency, we propose to use off-policy experience for both higher and lower-level training. This poses a considerable challenge, since changes to the lower-level behaviors change the action space for the higher-level policy, and we introduce an off-policy correction to remedy this challenge. This allows us to take advantage of recent advances in off-policy model-free RL to learn both higher- and lower-level policies using substantially fewer environment interactions than on-policy algorithms. We term the resulting HRL agent HIRO and find that it is generally applicable and highly sample-efficient. Our experiments show that HIRO can be used to learn highly complex behaviors for simulated robots, such as pushing objects and utilizing them to reach target locations, learning from only a few million samples, equivalent to a few days of real-time interaction. In comparisons with a number of prior HRL methods, we find that our approach substantially outperforms previous state-of-the-art techniques.

* NIPS 2018 

  Click for Model/Code and Paper
Near-Optimal Representation Learning for Hierarchical Reinforcement Learning

Oct 02, 2018
Ofir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine

We study the problem of representation learning in goal-conditioned hierarchical reinforcement learning. In such hierarchical structures, a higher-level controller solves tasks by iteratively communicating goals which a lower-level policy is trained to reach. Accordingly, the choice of representation -- the mapping of observation space to goal space -- is crucial. To study this problem, we develop a notion of sub-optimality of a representation, defined in terms of expected reward of the optimal hierarchical policy using this representation. We derive expressions which bound the sub-optimality and show how these expressions can be translated to representation learning objectives which may be optimized in practice. Results on a number of difficult continuous-control tasks show that our approach to representation learning yields qualitatively better representations as well as quantitatively better hierarchical policies, compared to existing methods (see videos at

  Click for Model/Code and Paper