Models, code, and papers for "Hyeji Kim":

Automatic Rank Selection for High-Speed Convolutional Neural Network

Jun 29, 2018
Hyeji Kim, Chong-Min Kyung

Low-rank decomposition plays a central role in accelerating convolutional neural network (CNN), and the rank of decomposed kernel-tensor is a key parameter that determines the complexity and accuracy of a neural network. In this paper, we define rank selection as a combinatorial optimization problem and propose a methodology to minimize network complexity while maintaining the desired accuracy. Combinatorial optimization is not feasible due to search space limitations. To restrict the search space and obtain the optimal rank, we define the space constraint parameters with a boundary condition. We also propose a linearly-approximated accuracy function to predict the fine-tuned accuracy of the optimized CNN model during the cost reduction. Experimental results on AlexNet and VGG-16 show that the proposed rank selection algorithm satisfies the accuracy constraint. Our method combined with truncated-SVD outperforms state-of-the-art methods in terms of inference and training time at almost the same accuracy.

* This idea was submitted to CVPR 2018 (Nov. 2017) 

  Click for Model/Code and Paper
A Framework for Fast and Efficient Neural Network Compression

Dec 04, 2018
Hyeji Kim, Muhammad Umar Karim, Chong-Min Kyung

Network compression reduces the computational complexity and memory consumption of deep neural networks by reducing the number of parameters. In SVD-based network compression, the right rank needs to be decided for every layer of the network. In this paper, we propose an efficient method for obtaining the rank configuration of the whole network. Unlike previous methods which consider each layer separately, our method considers the whole network to choose the right rank configuration. We propose novel accuracy metrics to represent the accuracy and complexity relationship for a given neural network. We use these metrics in a non-iterative fashion to obtain the right rank configuration which satisfies the constraints on FLOPs and memory while maintaining sufficient accuracy. Experiments show that our method provides better compromise between accuracy and computational complexity/memory consumption while performing compression at much higher speed. For VGG-16 our network can reduce the FLOPs by 25% and improve accuracy by 0.7% compared to the baseline, while requiring only 3 minutes on a CPU to search for the right rank configuration. Previously, similar results were achieved in 4 hours with 8 GPUs. The proposed method can be used for lossless compression of neural network as well. The better accuracy and complexity compromise, as well as the extremely fast speed of our method makes it suitable for neural network compression.


  Click for Model/Code and Paper
Deepcode: Feedback Codes via Deep Learning

Jul 02, 2018
Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, Pramod Viswanath

The design of codes for communicating reliably over a statistically well defined channel is an important endeavor involving deep mathematical research and wide-ranging practical applications. In this work, we present the first family of codes obtained via deep learning, which significantly beats state-of-the-art codes designed over several decades of research. The communication channel under consideration is the Gaussian noise channel with feedback, whose study was initiated by Shannon; feedback is known theoretically to improve reliability of communication, but no practical codes that do so have ever been successfully constructed. We break this logjam by integrating information theoretic insights harmoniously with recurrent-neural-network based encoders and decoders to create novel codes that outperform known codes by 3 orders of magnitude in reliability. We also demonstrate several desirable properties of the codes: (a) generalization to larger block lengths, (b) composability with known codes, (c) adaptation to practical constraints. This result also has broader ramifications for coding theory: even when the channel has a clear mathematical model, deep learning methodologies, when combined with channel-specific information-theoretic insights, can potentially beat state-of-the-art codes constructed over decades of mathematical research.

* 24 pages, 20 figures 

  Click for Model/Code and Paper
Discovering Potential Correlations via Hypercontractivity

Nov 13, 2017
Hyeji Kim, Weihao Gao, Sreeram Kannan, Sewoong Oh, Pramod Viswanath

Discovering a correlation from one variable to another variable is of fundamental scientific and practical interest. While existing correlation measures are suitable for discovering average correlation, they fail to discover hidden or potential correlations. To bridge this gap, (i) we postulate a set of natural axioms that we expect a measure of potential correlation to satisfy; (ii) we show that the rate of information bottleneck, i.e., the hypercontractivity coefficient, satisfies all the proposed axioms; (iii) we provide a novel estimator to estimate the hypercontractivity coefficient from samples; and (iv) we provide numerical experiments demonstrating that this proposed estimator discovers potential correlations among various indicators of WHO datasets, is robust in discovering gene interactions from gene expression time series data, and is statistically more powerful than the estimators for other correlation measures in binary hypothesis testing of canonical examples of potential correlations.

* 30 pages, 19 figures, accepted for publication in the 31st Conference on Neural Information Processing Systems (NIPS 2017) 

  Click for Model/Code and Paper
LEARN Codes: Inventing Low-latency Codes via Recurrent Neural Networks

Nov 30, 2018
Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, Pramod Viswanath

Designing channel codes under low latency constraints is one of the most demanding requirements in 5G standards. However, sharp characterizations of the performances of traditional codes are only available in the large block-length limit. Code designs are guided by those asymptotic analyses and require large block lengths and long latency to achieve the desired error rate. Furthermore, when the codes designed for one channel (e.g. Additive White Gaussian Noise (AWGN) channel) are used for another (e.g. non-AWGN channels), heuristics are necessary to achieve any nontrivial performance -thereby severely lacking in robustness as well as adaptivity. Obtained by jointly designing Recurrent Neural Network (RNN) based encoder and decoder, we propose an end-to-end learned neural code which outperforms canonical convolutional code under block settings. With this gained experience of designing a novel neural block code, we propose a new class of codes under low latency constraint - Low-latency Efficient Adaptive Robust Neural (LEARN) codes, which outperforms the state-of-the-art low latency codes as well as exhibits robustness and adaptivity properties. LEARN codes show the potential of designing new versatile and universal codes for future communications via tools of modern deep learning coupled with communication engineering insights.


  Click for Model/Code and Paper
Communication Algorithms via Deep Learning

May 23, 2018
Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan, Sewoong Oh, Pramod Viswanath

Coding theory is a central discipline underpinning wireline and wireless modems that are the workhorses of the information age. Progress in coding theory is largely driven by individual human ingenuity with sporadic breakthroughs over the past century. In this paper we study whether it is possible to automate the discovery of decoding algorithms via deep learning. We study a family of sequential codes parameterized by recurrent neural network (RNN) architectures. We show that creatively designed and trained RNN architectures can decode well known sequential codes such as the convolutional and turbo codes with close to optimal performance on the additive white Gaussian noise (AWGN) channel, which itself is achieved by breakthrough algorithms of our times (Viterbi and BCJR decoders, representing dynamic programing and forward-backward algorithms). We show strong generalizations, i.e., we train at a specific signal to noise ratio and block length but test at a wide range of these quantities, as well as robustness and adaptivity to deviations from the AWGN setting.

* 19 pages, published as a conference paper at ICLR 2018 

  Click for Model/Code and Paper