Models, code, and papers for "James Qin":

Adversarial Robustness through Local Linearization

Jul 04, 2019
Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy, Dvijotham, Alhussein Fawzi, Soham De, Robert Stanforth, Pushmeet Kohli

Adversarial training is an effective methodology for training deep neural networks that are robust against adversarial, norm-bounded perturbations. However, the computational cost of adversarial training grows prohibitively as the size of the model and number of input dimensions increase. Further, training against less expensive and therefore weaker adversaries produces models that are robust against weak attacks but break down under attacks that are stronger. This is often attributed to the phenomenon of gradient obfuscation; such models have a highly non-linear loss surface in the vicinity of training examples, making it hard for gradient-based attacks to succeed even though adversarial examples still exist. In this work, we introduce a novel regularizer that encourages the loss to behave linearly in the vicinity of the training data, thereby penalizing gradient obfuscation while encouraging robustness. We show via extensive experiments on CIFAR-10 and ImageNet, that models trained with our regularizer avoid gradient obfuscation and can be trained significantly faster than adversarial training. Using this regularizer, we exceed current state of the art and achieve 47% adversarial accuracy for ImageNet with l-infinity adversarial perturbations of radius 4/255 under an untargeted, strong, white-box attack. Additionally, we match state of the art results for CIFAR-10 at 8/255.


  Click for Model/Code and Paper
Learning Key-Value Store Design

Jul 11, 2019
Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew Ross, James Lennon, Varun Jain, Harshita Gupta, David Li, Zichen Zhu

We introduce the concept of design continuums for the data layout of key-value stores. A design continuum unifies major distinct data structure designs under the same model. The critical insight and potential long-term impact is that such unifying models 1) render what we consider up to now as fundamentally different data structures to be seen as views of the very same overall design space, and 2) allow seeing new data structure designs with performance properties that are not feasible by existing designs. The core intuition behind the construction of design continuums is that all data structures arise from the very same set of fundamental design principles, i.e., a small set of data layout design concepts out of which we can synthesize any design that exists in the literature as well as new ones. We show how to construct, evaluate, and expand, design continuums and we also present the first continuum that unifies major data structure designs, i.e., B+tree, B-epsilon-tree, LSM-tree, and LSH-table. The practical benefit of a design continuum is that it creates a fast inference engine for the design of data structures. For example, we can predict near instantly how a specific design change in the underlying storage of a data system would affect performance, or reversely what would be the optimal data structure (from a given set of designs) given workload characteristics and a memory budget. In turn, these properties allow us to envision a new class of self-designing key-value stores with a substantially improved ability to adapt to workload and hardware changes by transitioning between drastically different data structure designs to assume a diverse set of performance properties at will.


  Click for Model/Code and Paper
Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling

Feb 21, 2019
Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X. Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, Yanzhang He, Jan Chorowski, Smit Hinsu, Stella Laurenzo, James Qin, Orhan Firat, Wolfgang Macherey, Suyog Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming Pang, Ron J. Weiss, Rohit Prabhavalkar, Qiao Liang, Benoit Jacob, Bowen Liang, HyoukJoong Lee, Ciprian Chelba, Sébastien Jean, Bo Li, Melvin Johnson, Rohan Anil, Rajat Tibrewal, Xiaobing Liu, Akiko Eriguchi, Navdeep Jaitly, Naveen Ari, Colin Cherry, Parisa Haghani, Otavio Good, Youlong Cheng, Raziel Alvarez, Isaac Caswell, Wei-Ning Hsu, Zongheng Yang, Kuan-Chieh Wang, Ekaterina Gonina, Katrin Tomanek, Ben Vanik, Zelin Wu, Llion Jones, Mike Schuster, Yanping Huang, Dehao Chen, Kazuki Irie, George Foster, John Richardson, Klaus Macherey, Antoine Bruguier, Heiga Zen, Colin Raffel, Shankar Kumar, Kanishka Rao, David Rybach, Matthew Murray, Vijayaditya Peddinti, Maxim Krikun, Michiel A. U. Bacchiani, Thomas B. Jablin, Rob Suderman, Ian Williams, Benjamin Lee, Deepti Bhatia, Justin Carlson, Semih Yavuz, Yu Zhang, Ian McGraw, Max Galkin, Qi Ge, Golan Pundak, Chad Whipkey, Todd Wang, Uri Alon, Dmitry Lepikhin, Ye Tian, Sara Sabour, William Chan, Shubham Toshniwal, Baohua Liao, Michael Nirschl, Pat Rondon

Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed training and quantized inference are supported directly within the framework, and it contains existing implementations of a large number of utilities, helper functions, and the newest research ideas. Lingvo has been used in collaboration by dozens of researchers in more than 20 papers over the last two years. This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the framework.


  Click for Model/Code and Paper
Instance Segmentation based Semantic Matting for Compositing Applications

Apr 10, 2019
Guanqing Hu, James J. Clark

Image compositing is a key step in film making and image editing that aims to segment a foreground object and combine it with a new background. Automatic image compositing can be done easily in a studio using chroma-keying when the background is pure blue or green. However, image compositing in natural scenes with complex backgrounds remains a tedious task, requiring experienced artists to hand-segment. In order to achieve automatic compositing in natural scenes, we propose a fully automated method that integrates instance segmentation and image matting processes to generate high-quality semantic mattes that can be used for image editing task. Our approach can be seen both as a refinement of existing instance segmentation algorithms and as a fully automated semantic image matting method. It extends automatic image compositing techniques such as chroma-keying to scenes with complex natural backgrounds without the need for any kind of user interaction. The output of our approach can be considered as both refined instance segmentations and alpha mattes with semantic meanings. We provide experimental results which show improved performance results as compared to existing approaches.

* 16th Conference on Computer and Robot Vision (CRV 2019) 

  Click for Model/Code and Paper
Personalization of Saliency Estimation

Nov 21, 2017
Bingqing Yu, James J. Clark

Most existing saliency models use low-level features or task descriptions when generating attention predictions. However, the link between observer characteristics and gaze patterns is rarely investigated. We present a novel saliency prediction technique which takes viewers' identities and personal traits into consideration when modeling human attention. Instead of only computing image salience for average observers, we consider the interpersonal variation in the viewing behaviors of observers with different personal traits and backgrounds. We present an enriched derivative of the GAN network, which is able to generate personalized saliency predictions when fed with image stimuli and specific information about the observer. Our model contains a generator which generates grayscale saliency heat maps based on the image and an observer label. The generator is paired with an adversarial discriminator which learns to distinguish generated salience from ground truth salience. The discriminator also has the observer label as an input, which contributes to the personalization ability of our approach. We evaluate the performance of our personalized salience model by comparison with a benchmark model along with other un-personalized predictions, and illustrate improvements in prediction accuracy for all tested observer groups.


  Click for Model/Code and Paper
WAYLA - Generating Images from Eye Movements

Nov 21, 2017
Bingqing Yu, James J. Clark

We present a method for reconstructing images viewed by observers based only on their eye movements. By exploring the relationships between gaze patterns and image stimuli, the "What Are You Looking At?" (WAYLA) system learns to synthesize photo-realistic images that are similar to the original pictures being viewed. The WAYLA approach is based on the Conditional Generative Adversarial Network (Conditional GAN) image-to-image translation technique of Isola et al. We consider two specific applications - the first, of reconstructing newspaper images from gaze heat maps, and the second, of detailed reconstruction of images containing only text. The newspaper image reconstruction process is divided into two image-to-image translation operations, the first mapping gaze heat maps into image segmentations, and the second mapping the generated segmentation into a newspaper image. We validate the performance of our approach using various evaluation metrics, along with human visual inspection. All results confirm the ability of our network to perform image generation tasks using eye tracking data.


  Click for Model/Code and Paper
Efficient Gender Classification Using a Deep LDA-Pruned Net

Oct 23, 2018
Qing Tian, Tal Arbel, James J. Clark

Many real-time tasks, such as human-computer interaction, require fast and efficient facial gender classification. Although deep CNN nets have been very effective for a multitude of classification tasks, their high space and time demands make them impractical for personal computers and mobile devices without a powerful GPU. In this paper, we develop a 16-layer, yet lightweight, neural network which boosts efficiency while maintaining high accuracy. Our net is pruned from the VGG-16 model starting from the last convolutional (conv) layer where we find neuron activations are highly uncorrelated given the gender. Through Fisher's Linear Discriminant Analysis (LDA), we show that this high decorrelation makes it safe to discard directly last conv layer neurons with high within-class variance and low between-class variance. Combined with either Support Vector Machines (SVM) or Bayesian classification, the reduced CNNs are capable of achieving comparable (or even higher) accuracies on the LFW and CelebA datasets than the original net with fully connected layers. On LFW, only four Conv5_3 neurons are able to maintain a comparably high recognition accuracy, which results in a reduction of total network size by a factor of 70X with a 11 fold speedup. Comparisons with a state-of-the-art pruning method as well as two smaller nets in terms of accuracy loss and convolutional layers pruning rate are also provided.

* The only difference with the previous version v2 is the title on the arxiv page. I am changing it back to the original title in v1 because otherwise google scholar cannot track the citations to this arxiv paper correctly. You could cite either the conference version or this arxiv version. They are equivalent 

  Click for Model/Code and Paper
Fisher Pruning of Deep Nets for Facial Trait Classification

Mar 21, 2018
Qing Tian, Tal Arbel, James J. Clark

Although deep nets have resulted in high accuracies for various visual tasks, their computational and space requirements are prohibitively high for inclusion on devices without high-end GPUs. In this paper, we introduce a neuron/filter level pruning framework based on Fisher's LDA which leads to high accuracies for a wide array of facial trait classification tasks, while significantly reducing space/computational complexities. The approach is general and can be applied to convolutional, fully-connected, and module-based deep structures, in all cases leveraging the high decorrelation of neuron activations found in the pre-decision layer and cross-layer deconv dependency. Experimental results on binary and multi-category facial traits from the LFWA and Adience datasets illustrate the framework's comparable/better performance to state-of-the-art pruning approaches and compact structures (e.g. SqueezeNet, MobileNet). Ours successfully maintains comparable accuracies even after discarding most parameters (98%-99% for VGG-16, 82% for GoogLeNet) and with significant FLOP reductions (83% for VGG-16, 64% for GoogLeNet).


  Click for Model/Code and Paper
General Convolutional Sparse Coding with Unknown Noise

Mar 08, 2019
Yaqing Wang, James T. Kwok, Lionel M. Ni

Convolutional sparse coding (CSC) can learn representative shift-invariant patterns from multiple kinds of data. However, existing CSC methods can only model noises from Gaussian distribution, which is restrictive and unrealistic. In this paper, we propose a general CSC model capable of dealing with complicated unknown noise. The noise is now modeled by Gaussian mixture model, which can approximate any continuous probability density function. We use the expectation-maximization algorithm to solve the problem and design an efficient method for the weighted CSC problem in maximization step. The crux is to speed up the convolution in the frequency domain while keeping the other computation involving weight matrix in the spatial domain. Besides, we simultaneously update the dictionary and codes by nonconvex accelerated proximal gradient algorithm without bringing in extra alternating loops. The resultant method obtains comparable time and space complexity compared with existing CSC methods. Extensive experiments on synthetic and real noisy biomedical data sets validate that our method can model noise effectively and obtain high-quality filters and representation.


  Click for Model/Code and Paper
Tensor Completion Algorithms in Big Data Analytics

May 03, 2018
Qingquan Song, Hancheng Ge, James Caverlee, Xia Hu

Tensor completion is a problem of filling the missing or unobserved entries of partially observed tensors. Due to the multidimensional character of tensors in describing complex datasets, tensor completion algorithms and their applications have received wide attention and achievement in areas like data mining, computer vision, signal processing, and neuroscience. In this survey, we provide a modern overview of recent advances in tensor completion algorithms from the perspective of big data analytics characterized by diverse variety, large volume, and high velocity. We characterize these advances from four perspectives: general tensor completion algorithms, tensor completion with auxiliary information (variety), scalable tensor completion algorithms (volume), and dynamic tensor completion algorithms (velocity). Further, we identify several tensor completion applications on real-world data-driven problems and present some common experimental frameworks popularized in the literature. Our goal is to summarize these popular methods and introduce them to researchers and practitioners for promoting future research and applications. We conclude with a discussion of key challenges and promising research directions in this community for future exploration.


  Click for Model/Code and Paper
Temporal Collaborative Ranking Via Personalized Transformer

Aug 15, 2019
Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James Sharpnack

The collaborative ranking problem has been an important open research question as most recommendation problems can be naturally formulated as ranking problems. While much of collaborative ranking methodology assumes static ranking data, the importance of temporal information to improving ranking performance is increasingly apparent. Recent advances in deep learning, especially the discovery of various attention mechanisms and newer architectures in addition to widely used RNN and CNN in natural language processing, have allowed us to make better use of the temporal ordering of items that each user has engaged with. In particular, the SASRec model, inspired by the popular Transformer model in natural languages processing, has achieved state-of-art results in the temporal collaborative ranking problem and enjoyed more than 10x speed-up when compared to earlier CNN/RNN-based methods. However, SASRec is inherently an un-personalized model and does not include personalized user embeddings. To overcome this limitation, we propose a Personalized Transformer (SSE-PT) model, outperforming SASRec by almost 5% in terms of NDCG@10 on 5 real-world datasets. Furthermore, after examining some random users' engagement history and corresponding attention heat maps used during the inference stage, we find our model is not only more interpretable but also able to focus on recent engagement patterns for each user. Moreover, our SSE-PT model with a slight modification, which we call SSE-PT++, can handle extremely long sequences and outperform SASRec in ranking results with comparable training speed, striking a balance between performance and speed requirements. Code and data are open sourced at https://github.com/wuliwei9278/SSE-PT.

* plan to submit for review 

  Click for Model/Code and Paper
Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers

May 25, 2019
Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James Sharpnack

In deep neural nets, lower level embedding layers account for a large portion of the total number of parameters. Tikhonov regularization, graph-based regularization, and hard parameter sharing are approaches that introduce explicit biases into training in a hope to reduce statistical complexity. Alternatively, we propose stochastically shared embeddings (SSE), a data-driven approach to regularizing embedding layers, which stochastically transitions between embeddings during stochastic gradient descent (SGD). Because SSE integrates seamlessly with existing SGD algorithms, it can be used with only minor modifications when training large scale neural networks. We develop two versions of SSE: SSE-Graph using knowledge graphs of embeddings; SSE-SE using no prior information. We provide theoretical guarantees for our method and show its empirical effectiveness on 6 distinct tasks, from simple neural networks with one hidden layer in recommender systems, to the transformer and BERT in natural languages. We find that when used along with widely-used regularization methods such as weight decay and dropout, our proposed SSE can further reduce overfitting, which often leads to more favorable generalization results.

* submitted for review 

  Click for Model/Code and Paper
Generalizing from a Few Examples: A Survey on Few-Shot Learning

May 13, 2019
Yaqing Wang, Quanming Yao, James Kwok, Lionel M. Ni

Artificial intelligence succeeds in data-intensive applications, but it lacks the ability to learn from a limited number of examples. To tackle this problem, Few-Shot Learning (FSL) is proposed. It can rapidly generalize from new tasks of limited supervised experience using prior knowledge. To fully understand FSL, we conduct a survey study. We first clarify a formal definition for FSL. Then we figure out that the unreliable empirical risk minimizer is the core issue of FSL. Based on how prior knowledge is used to deal with the core issue, we categorize different FSL methods into three perspectives: data uses the prior knowledge to augment the supervised experience, model constrains the hypothesis space by prior knowledge, and algorithm uses prior knowledge to alter the search for the parameter of the best hypothesis in the hypothesis space. Under this unified taxonomy, we provide a thorough discussion of pros and cons across different categories. Finally, we propose possible directions for FSL in terms of problem setup, techniques, applications, and theories, in the hope of providing insights to the following research.


  Click for Model/Code and Paper
Online Convolutional Sparse Coding with Sample-Dependent Dictionary

Jun 07, 2018
Yaqing Wang, Quanming Yao, James T. Kwok, Lionel M. Ni

Convolutional sparse coding (CSC) has been popularly used for the learning of shift-invariant dictionaries in image and signal processing. However, existing methods have limited scalability. In this paper, instead of convolving with a dictionary shared by all samples, we propose the use of a sample-dependent dictionary in which filters are obtained as linear combinations of a small set of base filters learned from the data. This added flexibility allows a large number of sample-dependent patterns to be captured, while the resultant model can still be efficiently learned by online learning. Extensive experimental results show that the proposed method outperforms existing CSC algorithms with significantly reduced time and space requirements.

* Accepted by ICML-2018 

  Click for Model/Code and Paper
Scalable Online Convolutional Sparse Coding

Nov 02, 2017
Yaqing Wang, Quanming Yao, James T. Kwok, Lionel M. Ni

Convolutional sparse coding (CSC) improves sparse coding by learning a shift-invariant dictionary from the data. However, existing CSC algorithms operate in the batch mode and are expensive, in terms of both space and time, on large datasets. In this paper, we alleviate these problems by using online learning. The key is a reformulation of the CSC objective so that convolution can be handled easily in the frequency domain and much smaller history matrices are needed. We use the alternating direction method of multipliers (ADMM) to solve the resulting optimization problem and the ADMM subproblems have efficient closed-form solutions. Theoretical analysis shows that the learned dictionary converges to a stationary point of the optimization problem. Extensive experiments show that convergence of the proposed method is much faster and its reconstruction performance is also better. Moreover, while existing CSC algorithms can only run on a small number of images, the proposed method can handle at least ten times more images.


  Click for Model/Code and Paper
Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation

Jul 30, 2018
Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing Sun, James M. Rehg, Jan Kautz

Estimation of 3D motion in a dynamic scene from a temporal pair of images is a core task in many scene understanding problems. In real world applications, a dynamic scene is commonly captured by a moving camera (i.e., panning, tilting or hand-held), increasing the task complexity because the scene is observed from different view points. The main challenge is the disambiguation of the camera motion from scene motion, which becomes more difficult as the amount of rigidity observed decreases, even with successful estimation of 2D image correspondences. Compared to other state-of-the-art 3D scene flow estimation methods, in this paper we propose to \emph{learn} the rigidity of a scene in a supervised manner from a large collection of dynamic scene data, and directly infer a rigidity mask from two sequential images with depths. With the learned network, we show how we can effectively estimate camera motion and projected scene flow using computed 2D optical flow and the inferred rigidity mask. For training and testing the rigidity network, we also provide a new semi-synthetic dynamic scene dataset (synthetic foreground objects with a real background) and an evaluation split that accounts for the percentage of observed non-rigid pixels. Through our evaluation we show the proposed framework outperforms current state-of-the-art scene flow estimation methods in challenging dynamic scenes.

* This work is accepted at European Conference on Computer Vision 2018. Project page (with the video): http://research.nvidia.com/publication/2018-09_Learning-Rigidity-in The codes will be released at https://github.com/NVlabs/learningrigidity 

  Click for Model/Code and Paper
Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task

Oct 25, 2018
Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, Dragomir Radev

We present Spider, a large-scale, complex and cross-domain semantic parsing and text-to-SQL dataset annotated by 11 college students. It consists of 10,181 questions and 5,693 unique complex SQL queries on 200 databases with multiple tables, covering 138 different domains. We define a new complex and cross-domain semantic parsing and text-to-SQL task where different complex SQL queries and databases appear in train and test sets. In this way, the task requires the model to generalize well to both new SQL queries and new database schemas. Spider is distinct from most of the previous semantic parsing tasks because they all use a single database and the exact same programs in the train set and the test set. We experiment with various state-of-the-art models and the best model achieves only 12.4% exact matching accuracy on a database split setting. This shows that Spider presents a strong challenge for future research. Our dataset and task are publicly available at https://yale-lily.github.io/spider

* EMNLP 2018, Long Paper 

  Click for Model/Code and Paper
Weakly Supervised Estimation of Shadow Confidence Maps in Ultrasound Imaging

Nov 21, 2018
Qingjie Meng, Matthew Sinclair, Veronika Zimmer, Benjamin Hou, Martin Rajchl, Nicolas Toussaint, Alberto Gomez, James Housden, Jacqueline Matthew, Daniel Rueckert, Julia Schnabel, Bernhard Kainz

Detecting acoustic shadows in ultrasound images is important in many clinical and engineering applications. Real-time feedback of acoustic shadows can guide sonographers to a standardized diagnostic viewing plane with minimal artifacts and can provide additional information for other automatic image analysis algorithms. However, automatically detecting shadow regions is challenging because pixel-wise annotation of acoustic shadows is subjective and time consuming. In this paper we propose a weakly supervised method for automatic confidence estimation of acoustic shadow regions, which is able to generate a dense shadow-focused confidence map. During training, a multi-task module for shadow segmentation is built to learn general shadow features according based image-level annotations as well as a small number of coarse pixel-wise shadow annotations. A transfer function is then established to extend the binary shadow segmentation to a reference confidence map. In addition, a confidence estimation network is proposed to learn the mapping between input images and the reference confidence maps. This confidence estimation network is able to predict shadow confidence maps directly from input images during inference. We evaluate DICE, soft DICE, recall, precision, mean squared error and inter-class correlation to verify the effectiveness of our method. Our method outperforms the state-of-the-art qualitatively and quantitatively. We further demonstrate the applicability of our method by integrating shadow confidence maps into tasks such as ultrasound image classification, multi-view image fusion and automated biometric measurements.


  Click for Model/Code and Paper
Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications

Nov 29, 2018
Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah, Daya Khudia, James Law, Parth Malani, Andrey Malevich, Satish Nadathur, Juan Pino, Martin Schatz, Alexander Sidorov, Viswanath Sivakumar, Andrew Tulloch, Xiaodong Wang, Yiming Wu, Hector Yuen, Utku Diril, Dmytro Dzhulgakov, Kim Hazelwood, Bill Jia, Yangqing Jia, Lin Qiao, Vijay Rao, Nadav Rotem, Sungjoo Yoo, Mikhail Smelyanskiy

The application of deep learning techniques resulted in remarkable improvement of machine learning models. In this paper provides detailed characterizations of deep learning models used in many Facebook social network services. We present computational characteristics of our models, describe high performance optimizations targeting existing systems, point out their limitations and make suggestions for the future general-purpose/accelerated inference hardware. Also, we highlight the need for better co-design of algorithms, numerics and computing platforms to address the challenges of workloads often run in data centers.


  Click for Model/Code and Paper