Models, code, and papers for "Jean-Pierre Briot":

Music Generation by Deep Learning - Challenges and Directions

Sep 30, 2018
Jean-Pierre Briot, François Pachet

In addition to traditional tasks such as prediction, classification and translation, deep learning is receiving growing attention as an approach for music generation, as witnessed by recent research groups such as Magenta at Google and CTRL (Creator Technology Research Lab) at Spotify. The motivation is in using the capacity of deep learning architectures and training techniques to automatically learn musical styles from arbitrary musical corpora and then to generate samples from the estimated distribution. However, a direct application of deep learning to generate content rapidly reaches limits as the generated content tends to mimic the training set without exhibiting true creativity. Moreover, deep learning architectures do not offer direct ways for controlling generation (e.g., imposing some tonality or other arbitrary constraints). Furthermore, deep learning architectures alone are autistic automata which generate music autonomously without human user interaction, far from the objective of interactively assisting musicians to compose and refine music. Issues such as: control, structure, creativity and interactivity are the focus of our analysis. In this paper, we select some limitations of a direct application of deep learning to music generation, analyze why the issues are not fulfilled and how to address them by possible approaches. Various examples of recent systems are cited as examples of promising directions.

* 17 pages. arXiv admin note: substantial text overlap with arXiv:1709.01620. Accepted for publication in Special Issue on Deep learning for music and audio, Neural Computing & Applications, Springer Nature, 2018 

  Click for Model/Code and Paper
Deep Learning Techniques for Music Generation - A Survey

Sep 05, 2017
Jean-Pierre Briot, Gaëtan Hadjeres, François Pachet

This book is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. At first, we propose a methodology based on four dimensions for our analysis: - objective - What musical content is to be generated? (e.g., melody, accompaniment...); - representation - What are the information formats used for the corpus and for the expected generated output? (e.g., MIDI, piano roll, text...); - architecture - What type of deep neural network is to be used? (e.g., recurrent network, autoencoder, generative adversarial networks...); - strategy - How to model and control the process of generation (e.g., direct feedforward, sampling, unit selection...). For each dimension, we conduct a comparative analysis of various models and techniques. For the strategy dimension, we propose some tentative typology of possible approaches and mechanisms. This classification is bottom-up, based on the analysis of many existing deep-learning based systems for music generation, which are described in this book. The last part of the book includes discussion and prospects.

* 108 pages 

  Click for Model/Code and Paper
A Hybrid Architecture for Multi-Party Conversational Systems

May 04, 2017
Maira Gatti de Bayser, Paulo Cavalin, Renan Souza, Alan Braz, Heloisa Candello, Claudio Pinhanez, Jean-Pierre Briot

Multi-party Conversational Systems are systems with natural language interaction between one or more people or systems. From the moment that an utterance is sent to a group, to the moment that it is replied in the group by a member, several activities must be done by the system: utterance understanding, information search, reasoning, among others. In this paper we present the challenges of designing and building multi-party conversational systems, the state of the art, our proposed hybrid architecture using both rules and machine learning and some insights after implementing and evaluating one on the finance domain.


  Click for Model/Code and Paper