Models, code, and papers for "Jiachen Wang":

Distributed Bandit Learning: Near-Optimal Regret with Efficient Communication

May 29, 2019
Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, Liwei Wang

We study the problem of regret minimization for distributed bandits learning, in which $M$ agents work collaboratively to minimize their total regret under the coordination of a central server. Our goal is to design communication protocols with near-optimal regret and little communication cost, which is measured by the total amount of transmitted data. For distributed multi-armed bandits, we propose a protocol with near-optimal regret and only $O(M\log(MK))$ communication cost, where $K$ is the number of arms. The communication cost is independent of the time horizon $T$, has only logarithmic dependence on the number of arms, and matches the lower bound except for a logarithmic factor. For distributed $d$-dimensional linear bandits, we propose a protocol that achieves near-optimal regret and has communication cost of order $\tilde{O}(Md)$, which has only logarithmic dependence on $T$.

  Click for Model/Code and Paper
Distributed Bandit Learning: How Much Communication is Needed to Achieve (Near) Optimal Regret

Apr 12, 2019
Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, Liwei Wang

We study the communication complexity of distributed multi-armed bandits (MAB) and distributed linear bandits for regret minimization. We propose communication protocols that achieve near-optimal regret bounds and result in optimal speed-up under mild conditions. We measure the communication cost of protocols by the total number of communicated numbers. For multi-armed bandits, we give two protocols that require little communication cost, one is independent of the time horizon $ T $ and the other is independent of the number of arms $ K $. In particular, for a distributed $K$-armed bandit with $M$ agents, our protocols achieve near-optimal regret $O(\sqrt{MKT\log T})$ with $O\left(M\log T\right)$ and $O\left(MK\log M\right)$ communication cost respectively. We also propose two protocols for $d$-dimensional distributed linear bandits that achieve near-optimal regret with $O(M^{1.5}d^3)$ and $O\left((Md+d\log\log d)\log T\right)$ communication cost respectively. The communication cost can be independent of $T$, or almost linear in $d$.

* 29 pages 

  Click for Model/Code and Paper
DASNet: Dynamic Activation Sparsity for Neural Network Efficiency Improvement

Sep 13, 2019
Qing Yang, Jiachen Mao, Zuoguan Wang, Hai Li

To improve the execution speed and efficiency of neural networks in embedded systems, it is crucial to decrease the model size and computational complexity. In addition to conventional compression techniques, e.g., weight pruning and quantization, removing unimportant activations can reduce the amount of data communication and the computation cost. Unlike weight parameters, the pattern of activations is directly related to input data and thereby changes dynamically. To regulate the dynamic activation sparsity (DAS), in this work, we propose a generic low-cost approach based on winners-take-all (WTA) dropout technique. The network enhanced by the proposed WTA dropout, namely \textit{DASNet}, features structured activation sparsity with an improved sparsity level. Compared to the static feature map pruning methods, DASNets provide better computation cost reduction. The WTA technique can be easily applied in deep neural networks without incurring additional training variables. More importantly, DASNet can be seamlessly integrated with other compression techniques, such as weight pruning and quantization, without compromising on accuracy. Our experiments on various networks and datasets present significant run-time speedups with negligible accuracy loss.

  Click for Model/Code and Paper
Joint Training of Candidate Extraction and Answer Selection for Reading Comprehension

May 16, 2018
Zhen Wang, Jiachen Liu, Xinyan Xiao, Yajuan Lyu, Tian Wu

While sophisticated neural-based techniques have been developed in reading comprehension, most approaches model the answer in an independent manner, ignoring its relations with other answer candidates. This problem can be even worse in open-domain scenarios, where candidates from multiple passages should be combined to answer a single question. In this paper, we formulate reading comprehension as an extract-then-select two-stage procedure. We first extract answer candidates from passages, then select the final answer by combining information from all the candidates. Furthermore, we regard candidate extraction as a latent variable and train the two-stage process jointly with reinforcement learning. As a result, our approach has improved the state-of-the-art performance significantly on two challenging open-domain reading comprehension datasets. Further analysis demonstrates the effectiveness of our model components, especially the information fusion of all the candidates and the joint training of the extract-then-select procedure.

* 10 pages, Accepted by ACL 2018 

  Click for Model/Code and Paper
An Empirical Study of Propagation-based Methods for Video Object Segmentation

Jul 30, 2019
Hengkai Guo, Wenji Wang, Guanjun Guo, Huaxia Li, Jiachen Liu, Qian He, Xuefeng Xiao

While propagation-based approaches have achieved state-of-the-art performance for video object segmentation, the literature lacks a fair comparison of different methods using the same settings. In this paper, we carry out an empirical study for propagation-based methods. We view these approaches from a unified perspective and conduct detailed ablation study for core methods, input cues, multi-object combination and training strategies. With careful designs, our improved end-to-end memory networks achieve a global mean of 76.1 on DAVIS 2017 val set.

* The 2019 DAVIS Challenge on Video Object Segmentation - CVPR Workshops 

  Click for Model/Code and Paper
Reproducibility Evaluation of SLANT Whole Brain Segmentation Across Clinical Magnetic Resonance Imaging Protocols

Jan 07, 2019
Yunxi Xiong, Yuankai Huo, Jiachen Wang, L. Taylor Davis, Maureen McHugo, Bennett A. Landman

Whole brain segmentation on structural magnetic resonance imaging (MRI) is essential for understanding neuroanatomical-functional relationships. Traditionally, multi-atlas segmentation has been regarded as the standard method for whole brain segmentation. In past few years, deep convolutional neural network (DCNN) segmentation methods have demonstrated their advantages in both accuracy and computational efficiency. Recently, we proposed the spatially localized atlas network tiles (SLANT) method, which is able to segment a 3D MRI brain scan into 132 anatomical regions. Commonly, DCNN segmentation methods yield inferior performance under external validations, especially when the testing patterns were not presented in the training cohorts. Recently, we obtained a clinically acquired, multi-sequence MRI brain cohort with 1480 clinically acquired, de-identified brain MRI scans on 395 patients using seven different MRI protocols. Moreover, each subject has at least two scans from different MRI protocols. Herein, we assess the SLANT method's intra- and inter-protocol reproducibility. SLANT achieved less than 0.05 coefficient of variation (CV) for intra-protocol experiments and less than 0.15 CV for inter-protocol experiments. The results show that the SLANT method achieved high intra- and inter- protocol reproducibility.

* To appear in SPIE Medical Imaging 2019 

  Click for Model/Code and Paper
Fully Automatic Liver Attenuation Estimation Combing CNN Segmentation and Morphological Operations

Jun 29, 2019
Yuankai Huo, James G. Terry, Jiachen Wang, Sangeeta Nair, Thomas A. Lasko, Barry I. Freedman, J. Jeffery Carr, Bennett A. Landman

Manually tracing regions of interest (ROIs) within the liver is the de facto standard method for measuring liver attenuation on computed tomography (CT) in diagnosing nonalcoholic fatty liver disease (NAFLD). However, manual tracing is resource intensive. To address these limitations and to expand the availability of a quantitative CT measure of hepatic steatosis, we propose the automatic liver attenuation ROI-based measurement (ALARM) method for automated liver attenuation estimation. The ALARM method consists of two major stages: (1) deep convolutional neural network (DCNN)-based liver segmentation and (2) automated ROI extraction. First, liver segmentation was achieved using our previously developed SS-Net. Then, a single central ROI (center-ROI) and three circles ROI (periphery-ROI) were computed based on liver segmentation and morphological operations. The ALARM method is available as an open source Docker container ( subjects with 738 abdomen CT scans from the African American-Diabetes Heart Study (AA-DHS) were used for external validation (testing), independent from the training and validation cohort (100 clinically acquired CT abdominal scans).

* Medical Physics 

  Click for Model/Code and Paper
Coronary Calcium Detection using 3D Attention Identical Dual Deep Network Based on Weakly Supervised Learning

Nov 10, 2018
Yuankai Huo, James G. Terry, Jiachen Wang, Vishwesh Nath, Camilo Bermudez, Shunxing Bao, Prasanna Parvathaneni, J. Jeffery Carr, Bennett A. Landman

Coronary artery calcium (CAC) is biomarker of advanced subclinical coronary artery disease and predicts myocardial infarction and death prior to age 60 years. The slice-wise manual delineation has been regarded as the gold standard of coronary calcium detection. However, manual efforts are time and resource consuming and even impracticable to be applied on large-scale cohorts. In this paper, we propose the attention identical dual network (AID-Net) to perform CAC detection using scan-rescan longitudinal non-contrast CT scans with weakly supervised attention by only using per scan level labels. To leverage the performance, 3D attention mechanisms were integrated into the AID-Net to provide complementary information for classification tasks. Moreover, the 3D Gradient-weighted Class Activation Mapping (Grad-CAM) was also proposed at the testing stage to interpret the behaviors of the deep neural network. 5075 non-contrast chest CT scans were used as training, validation and testing datasets. Baseline performance was assessed on the same cohort. From the results, the proposed AID-Net achieved the superior performance on classification accuracy (0.9272) and AUC (0.9627).

* Accepted by SPIE medical imaging 2019 

  Click for Model/Code and Paper
Lung Cancer Detection using Co-learning from Chest CT Images and Clinical Demographics

Feb 21, 2019
Jiachen Wang, Riqiang Gao, Yuankai Huo, Shunxing Bao, Yunxi Xiong, Sanja L. Antic, Travis J. Osterman, Pierre P. Massion, Bennett A. Landman

Early detection of lung cancer is essential in reducing mortality. Recent studies have demonstrated the clinical utility of low-dose computed tomography (CT) to detect lung cancer among individuals selected based on very limited clinical information. However, this strategy yields high false positive rates, which can lead to unnecessary and potentially harmful procedures. To address such challenges, we established a pipeline that co-learns from detailed clinical demographics and 3D CT images. Toward this end, we leveraged data from the Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions (MCL), which focuses on early detection of lung cancer. A 3D attention-based deep convolutional neural net (DCNN) is proposed to identify lung cancer from the chest CT scan without prior anatomical location of the suspicious nodule. To improve upon the non-invasive discrimination between benign and malignant, we applied a random forest classifier to a dataset integrating clinical information to imaging data. The results show that the AUC obtained from clinical demographics alone was 0.635 while the attention network alone reached an accuracy of 0.687. In contrast when applying our proposed pipeline integrating clinical and imaging variables, we reached an AUC of 0.787 on the testing dataset. The proposed network both efficiently captures anatomical information for classification and also generates attention maps that explain the features that drive performance.

* SPIE Medical Image, oral presentation 

  Click for Model/Code and Paper
A Tempt to Unify Heterogeneous Driving Databases using Traffic Primitives

May 13, 2018
Jiacheng Zhu, Wenshuo Wang, Ding Zhao

A multitude of publicly-available driving datasets and data platforms have been raised for autonomous vehicles (AV). However, the heterogeneities of databases in size, structure and driving context make existing datasets practically ineffective due to a lack of uniform frameworks and searchable indexes. In order to overcome these limitations on existing public datasets, this paper proposes a data unification framework based on traffic primitives with ability to automatically unify and label heterogeneous traffic data. This is achieved by two steps: 1) Carefully arrange raw multidimensional time series driving data into a relational database and then 2) automatically extract labeled and indexed traffic primitives from traffic data through a Bayesian nonparametric learning method. Finally, we evaluate the effectiveness of our developed framework using the collected real vehicle data.

* 6 pages, 7 figures, 1 table, ITSC 2018 

  Click for Model/Code and Paper
Probabilistic Trajectory Prediction for Autonomous Vehicles with Attentive Recurrent Neural Process

Oct 17, 2019
Jiacheng Zhu, Shenghao Qin, Wenshuo Wang, Ding Zhao

Predicting surrounding vehicle behaviors are critical to autonomous vehicles when negotiating in multi-vehicle interaction scenarios. Most existing approaches require tedious training process with large amounts of data and may fail to capture the propagating uncertainty in interaction behaviors. The multi-vehicle behaviors are assumed to be generated from a stochastic process. This paper proposes an attentive recurrent neural process (ARNP) approach to overcome the above limitations, which uses a neural process (NP) to learn a distribution of multi-vehicle interaction behavior. Our proposed model inherits the flexibility of neural networks while maintaining Bayesian probabilistic characteristics. Constructed by incorporating NPs with recurrent neural networks (RNNs), the ARNP model predicts the distribution of a target vehicle trajectory conditioned on the observed long-term sequential data of all surrounding vehicles. This approach is verified by learning and predicting lane-changing trajectories in complex traffic scenarios. Experimental results demonstrate that our proposed method outperforms previous counterparts in terms of accuracy and uncertainty expressiveness. Moreover, the meta-learning instinct of NPs enables our proposed ARNP model to capture global information of all observations, thereby being able to adapt to new targets efficiently.

* 7 pages, 5 figures, submitted to ICRA 2020 

  Click for Model/Code and Paper
A General Framework of Learning Multi-Vehicle Interaction Patterns from Videos

Jul 17, 2019
Chengyuan Zhang, Jiacheng Zhu, Wenshuo Wang, Ding Zhao

Semantic learning and understanding of multi-vehicle interaction patterns in a cluttered driving environment are essential but challenging for autonomous vehicles to make proper decisions. This paper presents a general framework to gain insights into intricate multi-vehicle interaction patterns from bird's-eye view traffic videos. We adopt a Gaussian velocity field to describe the time-varying multi-vehicle interaction behaviors and then use deep autoencoders to learn associated latent representations for each temporal frame. Then, we utilize a hidden semi-Markov model with a hierarchical Dirichlet process as a prior to segment these sequential representations into granular components, also called traffic primitives, corresponding to interaction patterns. Experimental results demonstrate that our proposed framework can extract traffic primitives from videos, thus providing a semantic way to analyze multi-vehicle interaction patterns, even for cluttered driving scenarios that are far messier than human beings can cope with.

* 2019 IEEE Intelligent Transportation Systems Conference (ITSC) 

  Click for Model/Code and Paper
Neyman-Pearson classification: parametrics and power enhancement

Jun 16, 2018
Xin Tong, Lucy Xia, Jiacheng Wang, Yang Feng

The Neyman-Pearson (NP) paradigm in binary classification seeks classifiers that achieve a minimal type II error while enforcing the prioritized type I error under some user-specified level. This paradigm serves naturally in applications such as severe disease diagnosis and spam detection, where people have clear priorities over the two error types. Despite recent advances in NP classification, the NP oracle inequalities, a core theoretical criterion to evaluate classifiers under the NP paradigm, were established only for classifiers based on nonparametric assumptions with bounded feature support. In this work, we conquer the challenges arisen from unbounded feature support in parametric settings and develop NP classification theory and methodology under these settings. Concretely, we propose a new parametric NP classifier NP-sLDA which satisfies the NP oracle inequalities. Furthermore, we construct an adaptive sample splitting scheme that can be applied universally to existing NP classifiers and this adaptive strategy greatly enhances the power of these classifiers. Through extensive numerical experiments and real data studies, we demonstrate the competence of NP-sLDA and the new sample splitting scheme.

* 31 pages 

  Click for Model/Code and Paper
Recurrent Attentive Neural Process for Sequential Data

Oct 17, 2019
Shenghao Qin, Jiacheng Zhu, Jimmy Qin, Wenshuo Wang, Ding Zhao

Neural processes (NPs) learn stochastic processes and predict the distribution of target output adaptively conditioned on a context set of observed input-output pairs. Furthermore, Attentive Neural Process (ANP) improved the prediction accuracy of NPs by incorporating attention mechanism among contexts and targets. In a number of real-world applications such as robotics, finance, speech, and biology, it is critical to learn the temporal order and recurrent structure from sequential data. However, the capability of NPs capturing these properties is limited due to its permutation invariance instinct. In this paper, we proposed the Recurrent Attentive Neural Process (RANP), or alternatively, Attentive Neural Process-RecurrentNeural Network(ANP-RNN), in which the ANP is incorporated into a recurrent neural network. The proposed model encapsulates both the inductive biases of recurrent neural networks and also the strength of NPs for modelling uncertainty. We demonstrate that RANP can effectively model sequential data and outperforms NPs and LSTMs remarkably in a 1D regression toy example as well as autonomous-driving applications.

* 12 pages, 6 figures, NeurIPS 2019 Workshop 

  Click for Model/Code and Paper
Learning to Design Circuits

Jan 17, 2019
Hanrui Wang, Jiacheng Yang, Hae-Seung Lee, Song Han

Analog IC design relies on human experts to search for parameters that satisfy circuit specifications with their experience and intuitions, which is highly labor intensive, time consuming and suboptimal. Machine learning is a promising tool to automate this process. However, supervised learning is difficult for this task due to the low availability of training data: 1) Circuit simulation is slow, thus generating large-scale dataset is time-consuming; 2) Most circuit designs are propitiatory IPs within individual IC companies, making it expensive to collect large-scale datasets. We propose Learning to Design Circuits (L2DC) to leverage reinforcement learning that learns to efficiently generate new circuits data and to optimize circuits. We fix the schematic, and optimize the parameters of the transistors automatically by training an RL agent with no prior knowledge about optimizing circuits. After iteratively getting observations, generating a new set of transistor parameters, getting a reward, and adjusting the model, L2DC is able to optimize circuits. We evaluate L2DC on two transimpedance amplifiers. Trained for a day, our RL agent can achieve comparable or better performance than human experts trained for a quarter. It first learns to meet hard-constraints (eg. gain, bandwidth), and then learns to optimize good-to-have targets (eg. area, power). Compared with grid search-aided human design, L2DC can achieve $\mathbf{250}\boldsymbol{\times}$ higher sample efficiency with comparable performance. Under the same runtime constraint, the performance of L2DC is also better than Bayesian Optimization.

* The first two authors contributed equally to this work 

  Click for Model/Code and Paper
A novel multivariate performance optimization method based on sparse coding and hyper-predictor learning

Jul 31, 2015
Jiachen Yanga, Zhiyong Dinga, Fei Guoa, Huogen Wanga, Nick Hughesb

In this paper, we investigate the problem of optimization multivariate performance measures, and propose a novel algorithm for it. Different from traditional machine learning methods which optimize simple loss functions to learn prediction function, the problem studied in this paper is how to learn effective hyper-predictor for a tuple of data points, so that a complex loss function corresponding to a multivariate performance measure can be minimized. We propose to present the tuple of data points to a tuple of sparse codes via a dictionary, and then apply a linear function to compare a sparse code against a give candidate class label. To learn the dictionary, sparse codes, and parameter of the linear function, we propose a joint optimization problem. In this problem, the both the reconstruction error and sparsity of sparse code, and the upper bound of the complex loss function are minimized. Moreover, the upper bound of the loss function is approximated by the sparse codes and the linear function parameter. To optimize this problem, we develop an iterative algorithm based on descent gradient methods to learn the sparse codes and hyper-predictor parameter alternately. Experiment results on some benchmark data sets show the advantage of the proposed methods over other state-of-the-art algorithms.

  Click for Model/Code and Paper
CrossWeigh: Training Named Entity Tagger from Imperfect Annotations

Sep 03, 2019
Zihan Wang, Jingbo Shang, Liyuan Liu, Lihao Lu, Jiacheng Liu, Jiawei Han

Everyone makes mistakes. So do human annotators when curating labels for named entity recognition (NER). Such label mistakes might hurt model training and interfere model comparison. In this study, we dive deep into one of the widely-adopted NER benchmark datasets, CoNLL03 NER. We are able to identify label mistakes in about 5.38% test sentences, which is a significant ratio considering that the state-of-the-art test F1 score is already around 93%. Therefore, we manually correct these label mistakes and form a cleaner test set. Our re-evaluation of popular models on this corrected test set leads to more accurate assessments, compared to those on the original test set. More importantly, we propose a simple yet effective framework, CrossWeigh, to handle label mistakes during NER model training. Specifically, it partitions the training data into several folds and train independent NER models to identify potential mistakes in each fold. Then it adjusts the weights of training data accordingly to train the final NER model. Extensive experiments demonstrate significant improvements of plugging various NER models into our proposed framework on three datasets. All implementations and corrected test set are available at our Github repo:

  Click for Model/Code and Paper
Mechatronic Design of a Dribbling System for RoboCup Small Size Robot

May 24, 2019
Zheyuan Huang, Yunkai Wang, Lingyun Chen, Jiacheng Li, Zexi Chen, Rong Xiong

RoboCup SSL is an excellent platform for researching artificial intelligence and robotics. The dribbling system is an essential issue, which is the main part for completing advanced soccer skills such as trapping and dribbling. In this paper, we designed a new dribbling system for SSL robots, including mechatronics design and control algorithms. For the mechatronics design, we analysed and exposed the 3-touch-point model with the simulation in ADAMS. In the motor controller algorithm, we use reinforcement learning to control the torque output. Finally we verified the results on the robot.

* RCAR 2019. arXiv admin note: substantial text overlap with arXiv:1905.09157 

  Click for Model/Code and Paper
MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence

Dec 02, 2017
Lianmin Zheng, Jiacheng Yang, Han Cai, Weinan Zhang, Jun Wang, Yong Yu

We introduce MAgent, a platform to support research and development of many-agent reinforcement learning. Unlike previous research platforms on single or multi-agent reinforcement learning, MAgent focuses on supporting the tasks and the applications that require hundreds to millions of agents. Within the interactions among a population of agents, it enables not only the study of learning algorithms for agents' optimal polices, but more importantly, the observation and understanding of individual agent's behaviors and social phenomena emerging from the AI society, including communication languages, leaderships, altruism. MAgent is highly scalable and can host up to one million agents on a single GPU server. MAgent also provides flexible configurations for AI researchers to design their customized environments and agents. In this demo, we present three environments designed on MAgent and show emerged collective intelligence by learning from scratch.

* NIPS 2017 & AAAI 2018 Demo 

  Click for Model/Code and Paper