Research papers and code for "Jiachen Wang":
We study the problem of regret minimization for distributed bandits learning, in which $M$ agents work collaboratively to minimize their total regret under the coordination of a central server. Our goal is to design communication protocols with near-optimal regret and little communication cost, which is measured by the total amount of transmitted data. For distributed multi-armed bandits, we propose a protocol with near-optimal regret and only $O(M\log(MK))$ communication cost, where $K$ is the number of arms. The communication cost is independent of the time horizon $T$, has only logarithmic dependence on the number of arms, and matches the lower bound except for a logarithmic factor. For distributed $d$-dimensional linear bandits, we propose a protocol that achieves near-optimal regret and has communication cost of order $\tilde{O}(Md)$, which has only logarithmic dependence on $T$.

Click to Read Paper and Get Code
We study the communication complexity of distributed multi-armed bandits (MAB) and distributed linear bandits for regret minimization. We propose communication protocols that achieve near-optimal regret bounds and result in optimal speed-up under mild conditions. We measure the communication cost of protocols by the total number of communicated numbers. For multi-armed bandits, we give two protocols that require little communication cost, one is independent of the time horizon $ T $ and the other is independent of the number of arms $ K $. In particular, for a distributed $K$-armed bandit with $M$ agents, our protocols achieve near-optimal regret $O(\sqrt{MKT\log T})$ with $O\left(M\log T\right)$ and $O\left(MK\log M\right)$ communication cost respectively. We also propose two protocols for $d$-dimensional distributed linear bandits that achieve near-optimal regret with $O(M^{1.5}d^3)$ and $O\left((Md+d\log\log d)\log T\right)$ communication cost respectively. The communication cost can be independent of $T$, or almost linear in $d$.

* 29 pages
Click to Read Paper and Get Code
While sophisticated neural-based techniques have been developed in reading comprehension, most approaches model the answer in an independent manner, ignoring its relations with other answer candidates. This problem can be even worse in open-domain scenarios, where candidates from multiple passages should be combined to answer a single question. In this paper, we formulate reading comprehension as an extract-then-select two-stage procedure. We first extract answer candidates from passages, then select the final answer by combining information from all the candidates. Furthermore, we regard candidate extraction as a latent variable and train the two-stage process jointly with reinforcement learning. As a result, our approach has improved the state-of-the-art performance significantly on two challenging open-domain reading comprehension datasets. Further analysis demonstrates the effectiveness of our model components, especially the information fusion of all the candidates and the joint training of the extract-then-select procedure.

* 10 pages, Accepted by ACL 2018
Click to Read Paper and Get Code
While propagation-based approaches have achieved state-of-the-art performance for video object segmentation, the literature lacks a fair comparison of different methods using the same settings. In this paper, we carry out an empirical study for propagation-based methods. We view these approaches from a unified perspective and conduct detailed ablation study for core methods, input cues, multi-object combination and training strategies. With careful designs, our improved end-to-end memory networks achieve a global mean of 76.1 on DAVIS 2017 val set.

* The 2019 DAVIS Challenge on Video Object Segmentation - CVPR Workshops
Click to Read Paper and Get Code
Whole brain segmentation on structural magnetic resonance imaging (MRI) is essential for understanding neuroanatomical-functional relationships. Traditionally, multi-atlas segmentation has been regarded as the standard method for whole brain segmentation. In past few years, deep convolutional neural network (DCNN) segmentation methods have demonstrated their advantages in both accuracy and computational efficiency. Recently, we proposed the spatially localized atlas network tiles (SLANT) method, which is able to segment a 3D MRI brain scan into 132 anatomical regions. Commonly, DCNN segmentation methods yield inferior performance under external validations, especially when the testing patterns were not presented in the training cohorts. Recently, we obtained a clinically acquired, multi-sequence MRI brain cohort with 1480 clinically acquired, de-identified brain MRI scans on 395 patients using seven different MRI protocols. Moreover, each subject has at least two scans from different MRI protocols. Herein, we assess the SLANT method's intra- and inter-protocol reproducibility. SLANT achieved less than 0.05 coefficient of variation (CV) for intra-protocol experiments and less than 0.15 CV for inter-protocol experiments. The results show that the SLANT method achieved high intra- and inter- protocol reproducibility.

* To appear in SPIE Medical Imaging 2019
Click to Read Paper and Get Code
Manually tracing regions of interest (ROIs) within the liver is the de facto standard method for measuring liver attenuation on computed tomography (CT) in diagnosing nonalcoholic fatty liver disease (NAFLD). However, manual tracing is resource intensive. To address these limitations and to expand the availability of a quantitative CT measure of hepatic steatosis, we propose the automatic liver attenuation ROI-based measurement (ALARM) method for automated liver attenuation estimation. The ALARM method consists of two major stages: (1) deep convolutional neural network (DCNN)-based liver segmentation and (2) automated ROI extraction. First, liver segmentation was achieved using our previously developed SS-Net. Then, a single central ROI (center-ROI) and three circles ROI (periphery-ROI) were computed based on liver segmentation and morphological operations. The ALARM method is available as an open source Docker container (https://github.com/MASILab/ALARM).246 subjects with 738 abdomen CT scans from the African American-Diabetes Heart Study (AA-DHS) were used for external validation (testing), independent from the training and validation cohort (100 clinically acquired CT abdominal scans).

* Medical Physics
Click to Read Paper and Get Code
Coronary artery calcium (CAC) is biomarker of advanced subclinical coronary artery disease and predicts myocardial infarction and death prior to age 60 years. The slice-wise manual delineation has been regarded as the gold standard of coronary calcium detection. However, manual efforts are time and resource consuming and even impracticable to be applied on large-scale cohorts. In this paper, we propose the attention identical dual network (AID-Net) to perform CAC detection using scan-rescan longitudinal non-contrast CT scans with weakly supervised attention by only using per scan level labels. To leverage the performance, 3D attention mechanisms were integrated into the AID-Net to provide complementary information for classification tasks. Moreover, the 3D Gradient-weighted Class Activation Mapping (Grad-CAM) was also proposed at the testing stage to interpret the behaviors of the deep neural network. 5075 non-contrast chest CT scans were used as training, validation and testing datasets. Baseline performance was assessed on the same cohort. From the results, the proposed AID-Net achieved the superior performance on classification accuracy (0.9272) and AUC (0.9627).

* Accepted by SPIE medical imaging 2019
Click to Read Paper and Get Code
Early detection of lung cancer is essential in reducing mortality. Recent studies have demonstrated the clinical utility of low-dose computed tomography (CT) to detect lung cancer among individuals selected based on very limited clinical information. However, this strategy yields high false positive rates, which can lead to unnecessary and potentially harmful procedures. To address such challenges, we established a pipeline that co-learns from detailed clinical demographics and 3D CT images. Toward this end, we leveraged data from the Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions (MCL), which focuses on early detection of lung cancer. A 3D attention-based deep convolutional neural net (DCNN) is proposed to identify lung cancer from the chest CT scan without prior anatomical location of the suspicious nodule. To improve upon the non-invasive discrimination between benign and malignant, we applied a random forest classifier to a dataset integrating clinical information to imaging data. The results show that the AUC obtained from clinical demographics alone was 0.635 while the attention network alone reached an accuracy of 0.687. In contrast when applying our proposed pipeline integrating clinical and imaging variables, we reached an AUC of 0.787 on the testing dataset. The proposed network both efficiently captures anatomical information for classification and also generates attention maps that explain the features that drive performance.

* SPIE Medical Image, oral presentation
Click to Read Paper and Get Code
A multitude of publicly-available driving datasets and data platforms have been raised for autonomous vehicles (AV). However, the heterogeneities of databases in size, structure and driving context make existing datasets practically ineffective due to a lack of uniform frameworks and searchable indexes. In order to overcome these limitations on existing public datasets, this paper proposes a data unification framework based on traffic primitives with ability to automatically unify and label heterogeneous traffic data. This is achieved by two steps: 1) Carefully arrange raw multidimensional time series driving data into a relational database and then 2) automatically extract labeled and indexed traffic primitives from traffic data through a Bayesian nonparametric learning method. Finally, we evaluate the effectiveness of our developed framework using the collected real vehicle data.

* 6 pages, 7 figures, 1 table, ITSC 2018
Click to Read Paper and Get Code
Semantic learning and understanding of multi-vehicle interaction patterns in a cluttered driving environment are essential but challenging for autonomous vehicles to make proper decisions. This paper presents a general framework to gain insights into intricate multi-vehicle interaction patterns from bird's-eye view traffic videos. We adopt a Gaussian velocity field to describe the time-varying multi-vehicle interaction behaviors and then use deep autoencoders to learn associated latent representations for each temporal frame. Then, we utilize a hidden semi-Markov model with a hierarchical Dirichlet process as a prior to segment these sequential representations into granular components, also called traffic primitives, corresponding to interaction patterns. Experimental results demonstrate that our proposed framework can extract traffic primitives from videos, thus providing a semantic way to analyze multi-vehicle interaction patterns, even for cluttered driving scenarios that are far messier than human beings can cope with.

* 2019 IEEE Intelligent Transportation Systems Conference (ITSC)
Click to Read Paper and Get Code
The Neyman-Pearson (NP) paradigm in binary classification seeks classifiers that achieve a minimal type II error while enforcing the prioritized type I error under some user-specified level. This paradigm serves naturally in applications such as severe disease diagnosis and spam detection, where people have clear priorities over the two error types. Despite recent advances in NP classification, the NP oracle inequalities, a core theoretical criterion to evaluate classifiers under the NP paradigm, were established only for classifiers based on nonparametric assumptions with bounded feature support. In this work, we conquer the challenges arisen from unbounded feature support in parametric settings and develop NP classification theory and methodology under these settings. Concretely, we propose a new parametric NP classifier NP-sLDA which satisfies the NP oracle inequalities. Furthermore, we construct an adaptive sample splitting scheme that can be applied universally to existing NP classifiers and this adaptive strategy greatly enhances the power of these classifiers. Through extensive numerical experiments and real data studies, we demonstrate the competence of NP-sLDA and the new sample splitting scheme.

* 31 pages
Click to Read Paper and Get Code
Analog IC design relies on human experts to search for parameters that satisfy circuit specifications with their experience and intuitions, which is highly labor intensive, time consuming and suboptimal. Machine learning is a promising tool to automate this process. However, supervised learning is difficult for this task due to the low availability of training data: 1) Circuit simulation is slow, thus generating large-scale dataset is time-consuming; 2) Most circuit designs are propitiatory IPs within individual IC companies, making it expensive to collect large-scale datasets. We propose Learning to Design Circuits (L2DC) to leverage reinforcement learning that learns to efficiently generate new circuits data and to optimize circuits. We fix the schematic, and optimize the parameters of the transistors automatically by training an RL agent with no prior knowledge about optimizing circuits. After iteratively getting observations, generating a new set of transistor parameters, getting a reward, and adjusting the model, L2DC is able to optimize circuits. We evaluate L2DC on two transimpedance amplifiers. Trained for a day, our RL agent can achieve comparable or better performance than human experts trained for a quarter. It first learns to meet hard-constraints (eg. gain, bandwidth), and then learns to optimize good-to-have targets (eg. area, power). Compared with grid search-aided human design, L2DC can achieve $\mathbf{250}\boldsymbol{\times}$ higher sample efficiency with comparable performance. Under the same runtime constraint, the performance of L2DC is also better than Bayesian Optimization.

* The first two authors contributed equally to this work
Click to Read Paper and Get Code
In this paper, we investigate the problem of optimization multivariate performance measures, and propose a novel algorithm for it. Different from traditional machine learning methods which optimize simple loss functions to learn prediction function, the problem studied in this paper is how to learn effective hyper-predictor for a tuple of data points, so that a complex loss function corresponding to a multivariate performance measure can be minimized. We propose to present the tuple of data points to a tuple of sparse codes via a dictionary, and then apply a linear function to compare a sparse code against a give candidate class label. To learn the dictionary, sparse codes, and parameter of the linear function, we propose a joint optimization problem. In this problem, the both the reconstruction error and sparsity of sparse code, and the upper bound of the complex loss function are minimized. Moreover, the upper bound of the loss function is approximated by the sparse codes and the linear function parameter. To optimize this problem, we develop an iterative algorithm based on descent gradient methods to learn the sparse codes and hyper-predictor parameter alternately. Experiment results on some benchmark data sets show the advantage of the proposed methods over other state-of-the-art algorithms.

Click to Read Paper and Get Code
RoboCup SSL is an excellent platform for researching artificial intelligence and robotics. The dribbling system is an essential issue, which is the main part for completing advanced soccer skills such as trapping and dribbling. In this paper, we designed a new dribbling system for SSL robots, including mechatronics design and control algorithms. For the mechatronics design, we analysed and exposed the 3-touch-point model with the simulation in ADAMS. In the motor controller algorithm, we use reinforcement learning to control the torque output. Finally we verified the results on the robot.

* RCAR 2019. arXiv admin note: substantial text overlap with arXiv:1905.09157
Click to Read Paper and Get Code
We introduce MAgent, a platform to support research and development of many-agent reinforcement learning. Unlike previous research platforms on single or multi-agent reinforcement learning, MAgent focuses on supporting the tasks and the applications that require hundreds to millions of agents. Within the interactions among a population of agents, it enables not only the study of learning algorithms for agents' optimal polices, but more importantly, the observation and understanding of individual agent's behaviors and social phenomena emerging from the AI society, including communication languages, leaderships, altruism. MAgent is highly scalable and can host up to one million agents on a single GPU server. MAgent also provides flexible configurations for AI researchers to design their customized environments and agents. In this demo, we present three environments designed on MAgent and show emerged collective intelligence by learning from scratch.

* NIPS 2017 & AAAI 2018 Demo
Click to Read Paper and Get Code
Autonomous vehicles (AV) are expected to navigate in complex traffic scenarios with multiple surrounding vehicles. The correlations between road users vary over time, the degree of which, in theory, could be infinitely large, and thus posing a great challenge in modeling and predicting the driving environment. In this research, we propose a method to reproduce such high-dimensional scenarios in a finitely tractable form by defining a stochastic vector field model in multi-vehicle interactions. We then apply non-parametric Bayesian learning to extract the underlying motion patterns from a large quantity of naturalistic traffic data. We use Gaussian process to model multi-vehicle motion, and Dirichlet process to assign each observation to a specific scenario. We implement the proposed method on NGSim highway and intersection data sets, in which complex multi-vehicle interactions are prevalent. The results show that the proposed method is capable of capturing motion patterns from both settings, without imposing heroic prior, hence can be applied for a wide array of traffic situations. The proposed modeling can enable simulation platforms and other testing methods designed for AV evaluation, to easily model and generate traffic scenarios emulating large scale driving data.

Click to Read Paper and Get Code
For the Small Size League of RoboCup 2018, Team ZJUNLict has won the champion and therefore, this paper thoroughly described the devotion which ZJUNLict has devoted and the effort that ZJUNLict has contributed. There are three mean optimizations for the mechanical part which accounted for most of our incredible goals, they are "Touching Point Optimization", "Damping System Optimization", and "Dribbler Optimization". For the electrical part, we realized "Direct Torque Control", "Efficient Radio Communication Protocol" which will be credited for stabilizing the dribbler and a more secure communication between robots and the computer. Our software group contributed as much as our hardware group with the effort of "Vision Lost Compensation" to predict the movement by kalman filter, and "Interception Prediction Algorithm" to achieve some skills and improve our ball possession rate.

* ZJUNlict Extended Team Description Paper for RoboCup 2019 Small Size League
Click to Read Paper and Get Code