Models, code, and papers for "Jianxiong Yin":

Improving Deep Lesion Detection Using 3D Contextual and Spatial Attention

Jul 09, 2019
Qingyi Tao, Zongyuan Ge, Jianfei Cai, Jianxiong Yin, Simon See

Lesion detection from computed tomography (CT) scans is challenging compared to natural object detection because of two major reasons: small lesion size and small inter-class variation. Firstly, the lesions usually only occupy a small region in the CT image. The feature of such small region may not be able to provide sufficient information due to its limited spatial feature resolution. Secondly, in CT scans, the lesions are often indistinguishable from the background since the lesion and non-lesion areas may have very similar appearances. To tackle both problems, we need to enrich the feature representation and improve the feature discriminativeness. Therefore, we introduce a dual-attention mechanism to the 3D contextual lesion detection framework, including the cross-slice contextual attention to selectively aggregate the information from different slices through a soft re-sampling process. Moreover, we propose intra-slice spatial attention to focus the feature learning in the most prominent regions. Our method can be easily trained end-to-end without adding heavy overhead on the base detection network. We use DeepLesion dataset and train a universal lesion detector to detect all kinds of lesions such as liver tumors, lung nodules, and so on. The results show that our model can significantly boost the results of the baseline lesion detector (with 3D contextual information) but using much fewer slices.

* Accepted by MICCAI 2019 

  Click for Model/Code and Paper
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Jan 29, 2018
Jason Kuen, Xiangfei Kong, Zhe Lin, Gang Wang, Jianxiong Yin, Simon See, Yap-Peng Tan

It is desirable to train convolutional networks (CNNs) to run more efficiently during inference. In many cases however, the computational budget that the system has for inference cannot be known beforehand during training, or the inference budget is dependent on the changing real-time resource availability. Thus, it is inadequate to train just inference-efficient CNNs, whose inference costs are not adjustable and cannot adapt to varied inference budgets. We propose a novel approach for cost-adjustable inference in CNNs - Stochastic Downsampling Point (SDPoint). During training, SDPoint applies feature map downsampling to a random point in the layer hierarchy, with a random downsampling ratio. The different stochastic downsampling configurations known as SDPoint instances (of the same model) have computational costs different from each other, while being trained to minimize the same prediction loss. Sharing network parameters across different instances provides significant regularization boost. During inference, one may handpick a SDPoint instance that best fits the inference budget. The effectiveness of SDPoint, as both a cost-adjustable inference approach and a regularizer, is validated through extensive experiments on image classification.

  Click for Model/Code and Paper
Secure Deep Learning Engineering: A Software Quality Assurance Perspective

Oct 10, 2018
Lei Ma, Felix Juefei-Xu, Minhui Xue, Qiang Hu, Sen Chen, Bo Li, Yang Liu, Jianjun Zhao, Jianxiong Yin, Simon See

Over the past decades, deep learning (DL) systems have achieved tremendous success and gained great popularity in various applications, such as intelligent machines, image processing, speech processing, and medical diagnostics. Deep neural networks are the key driving force behind its recent success, but still seem to be a magic black box lacking interpretability and understanding. This brings up many open safety and security issues with enormous and urgent demands on rigorous methodologies and engineering practice for quality enhancement. A plethora of studies have shown that the state-of-the-art DL systems suffer from defects and vulnerabilities that can lead to severe loss and tragedies, especially when applied to real-world safety-critical applications. In this paper, we perform a large-scale study and construct a paper repository of 223 relevant works to the quality assurance, security, and interpretation of deep learning. We, from a software quality assurance perspective, pinpoint challenges and future opportunities towards universal secure deep learning engineering. We hope this work and the accompanied paper repository can pave the path for the software engineering community towards addressing the pressing industrial demand of secure intelligent applications.

  Click for Model/Code and Paper
Coverage-Guided Fuzzing for Deep Neural Networks

Sep 07, 2018
Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Hongxu Chen, Minhui Xue, Bo Li, Yang Liu, Jianjun Zhao, Jianxiong Yin, Simon See

In company with the data explosion over the past decade, deep neural network (DNN) based software has experienced unprecedented leap and is becoming the key driving force of many novel industrial applications, including many safety-critical scenarios such as autonomous driving. Despite great success achieved in various human intelligence tasks, similar to traditional software, DNNs could also exhibit incorrect behaviors caused by hidden defects causing severe accidents and losses. In this paper, we propose an automated fuzz testing framework for hunting potential defects of general-purpose DNNs. It performs metamorphic mutation to generate new semantically preserved tests, and leverages multiple plugable coverage criteria as feedback to guide the test generation from different perspectives. To be scalable towards practical-sized DNNs, our framework maintains tests in batch, and prioritizes the tests selection based on active feedback. The effectiveness of our framework is extensively investigated on 3 popular datasets (MNIST, CIFAR-10, ImageNet) and 7 DNNs with diverse complexities, under large set of 6 coverage criteria as feedback. The large-scale experiments demonstrate that our fuzzing framework can (1) significantly boost the coverage with guidance; (2) generate useful tests to detect erroneous behaviors and facilitate the DNN model quality evaluation; (3) accurately capture potential defects during DNN quantization for platform migration.

  Click for Model/Code and Paper
DeepContext: Context-Encoding Neural Pathways for 3D Holistic Scene Understanding

Aug 16, 2017
Yinda Zhang, Mingru Bai, Pushmeet Kohli, Shahram Izadi, Jianxiong Xiao

While deep neural networks have led to human-level performance on computer vision tasks, they have yet to demonstrate similar gains for holistic scene understanding. In particular, 3D context has been shown to be an extremely important cue for scene understanding - yet very little research has been done on integrating context information with deep models. This paper presents an approach to embed 3D context into the topology of a neural network trained to perform holistic scene understanding. Given a depth image depicting a 3D scene, our network aligns the observed scene with a predefined 3D scene template, and then reasons about the existence and location of each object within the scene template. In doing so, our model recognizes multiple objects in a single forward pass of a 3D convolutional neural network, capturing both global scene and local object information simultaneously. To create training data for this 3D network, we generate partly hallucinated depth images which are rendered by replacing real objects with a repository of CAD models of the same object category. Extensive experiments demonstrate the effectiveness of our algorithm compared to the state-of-the-arts. Source code and data are available at

* Accepted by ICCV2017 

  Click for Model/Code and Paper
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop

Jun 04, 2016
Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, Jianxiong Xiao

While there has been remarkable progress in the performance of visual recognition algorithms, the state-of-the-art models tend to be exceptionally data-hungry. Large labeled training datasets, expensive and tedious to produce, are required to optimize millions of parameters in deep network models. Lagging behind the growth in model capacity, the available datasets are quickly becoming outdated in terms of size and density. To circumvent this bottleneck, we propose to amplify human effort through a partially automated labeling scheme, leveraging deep learning with humans in the loop. Starting from a large set of candidate images for each category, we iteratively sample a subset, ask people to label them, classify the others with a trained model, split the set into positives, negatives, and unlabeled based on the classification confidence, and then iterate with the unlabeled set. To assess the effectiveness of this cascading procedure and enable further progress in visual recognition research, we construct a new image dataset, LSUN. It contains around one million labeled images for each of 10 scene categories and 20 object categories. We experiment with training popular convolutional networks and find that they achieve substantial performance gains when trained on this dataset.

  Click for Model/Code and Paper
TurkerGaze: Crowdsourcing Saliency with Webcam based Eye Tracking

May 20, 2015
Pingmei Xu, Krista A Ehinger, Yinda Zhang, Adam Finkelstein, Sanjeev R. Kulkarni, Jianxiong Xiao

Traditional eye tracking requires specialized hardware, which means collecting gaze data from many observers is expensive, tedious and slow. Therefore, existing saliency prediction datasets are order-of-magnitudes smaller than typical datasets for other vision recognition tasks. The small size of these datasets limits the potential for training data intensive algorithms, and causes overfitting in benchmark evaluation. To address this deficiency, this paper introduces a webcam-based gaze tracking system that supports large-scale, crowdsourced eye tracking deployed on Amazon Mechanical Turk (AMTurk). By a combination of careful algorithm and gaming protocol design, our system obtains eye tracking data for saliency prediction comparable to data gathered in a traditional lab setting, with relatively lower cost and less effort on the part of the researchers. Using this tool, we build a saliency dataset for a large number of natural images. We will open-source our tool and provide a web server where researchers can upload their images to get eye tracking results from AMTurk.

* 9 pages, 14 figures 

  Click for Model/Code and Paper