Research papers and code for "Jihie Kim":
The amount of dialogue history to include in a conversational agent is often underestimated and/or set in an empirical and thus possibly naive way. This suggests that principled investigations into optimal context windows are urgently needed given that the amount of dialogue history and corresponding representations can play an important role in the overall performance of a conversational system. This paper studies the amount of history required by conversational agents for reliably predicting dialogue rewards. The task of dialogue reward prediction is chosen for investigating the effects of varying amounts of dialogue history and their impact on system performance. Experimental results using a dataset of 18K human-human dialogues report that lengthy dialogue histories of at least 10 sentences are preferred (25 sentences being the best in our experiments) over short ones, and that lengthy histories are useful for training dialogue reward predictors with strong positive correlations between target dialogue rewards and predicted ones.

* In NeurIPS Workshop on Conversational AI: "Today's Practice and Tomorrow's Potential", December 2018
Click to Read Paper and Get Code
Language models for agglutinative languages have always been hindered in past due to myriad of agglutinations possible to any given word through various affixes. We propose a method to diminish the problem of out-of-vocabulary words by introducing an embedding derived from syllables and morphemes which leverages the agglutinative property. Our model outperforms character-level embedding in perplexity by 16.87 with 9.50M parameters. Proposed method achieves state of the art performance over existing input prediction methods in terms of Key Stroke Saving and has been commercialized.

* Accepted at EMNLP 2017 workshop on Subword and Character level models in NLP (SCLeM)
Click to Read Paper and Get Code
Recent developments in deep learning with application to language modeling have led to success in tasks of text processing, summarizing and machine translation. However, deploying huge language models for mobile device such as on-device keyboards poses computation as a bottle-neck due to their puny computation capacities. In this work we propose an embedded deep learning based word prediction method that optimizes run-time memory and also provides a real time prediction environment. Our model size is 7.40MB and has average prediction time of 6.47 ms. We improve over the existing methods for word prediction in terms of key stroke savings and word prediction rate.

* 5 pages, 3 figures, EMNLP 2017 submitted
Click to Read Paper and Get Code
Training chatbots using the reinforcement learning paradigm is challenging due to high-dimensional states, infinite action spaces and the difficulty in specifying the reward function. We address such problems using clustered actions instead of infinite actions, and a simple but promising reward function based on human-likeness scores derived from human-human dialogue data. We train Deep Reinforcement Learning (DRL) agents using chitchat data in raw text---without any manual annotations. Experimental results using different splits of training data report the following. First, that our agents learn reasonable policies in the environments they get familiarised with, but their performance drops substantially when they are exposed to a test set of unseen dialogues. Second, that the choice of sentence embedding size between 100 and 300 dimensions is not significantly different on test data. Third, that our proposed human-likeness rewards are reasonable for training chatbots as long as they use lengthy dialogue histories of >=10 sentences.

* In International Joint Conference of Neural Networks (IJCNN), 2019
Click to Read Paper and Get Code
Trainable chatbots that exhibit fluent and human-like conversations remain a big challenge in artificial intelligence. Deep Reinforcement Learning (DRL) is promising for addressing this challenge, but its successful application remains an open question. This article describes a novel ensemble-based approach applied to value-based DRL chatbots, which use finite action sets as a form of meaning representation. In our approach, while dialogue actions are derived from sentence clustering, the training datasets in our ensemble are derived from dialogue clustering. The latter aim to induce specialised agents that learn to interact in a particular style. In order to facilitate neural chatbot training using our proposed approach, we assume dialogue data in raw text only -- without any manually-labelled data. Experimental results using chitchat data reveal that (1) near human-like dialogue policies can be induced, (2) generalisation to unseen data is a difficult problem, and (3) training an ensemble of chatbot agents is essential for improved performance over using a single agent. In addition to evaluations using held-out data, our results are further supported by a human evaluation that rated dialogues in terms of fluency, engagingness and consistency -- which revealed that our proposed dialogue rewards strongly correlate with human judgements.

* arXiv admin note: text overlap with arXiv:1908.10331
Click to Read Paper and Get Code