Models, code, and papers for "Jin-Dong Dong":

DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures

Jul 25, 2018
Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, Min Sun

Recent breakthroughs in Neural Architectural Search (NAS) have achieved state-of-the-art performances in applications such as image classification and language modeling. However, these techniques typically ignore device-related objectives such as inference time, memory usage, and power consumption. Optimizing neural architecture for device-related objectives is immensely crucial for deploying deep networks on portable devices with limited computing resources. We propose DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures, optimizing for both device-related (e.g., inference time and memory usage) and device-agnostic (e.g., accuracy and model size) objectives. DPP-Net employs a compact search space inspired by current state-of-the-art mobile CNNs, and further improves search efficiency by adopting progressive search (Liu et al. 2017). Experimental results on CIFAR-10 are poised to demonstrate the effectiveness of Pareto-optimal networks found by DPP-Net, for three different devices: (1) a workstation with Titan X GPU, (2) NVIDIA Jetson TX1 embedded system, and (3) mobile phone with ARM Cortex-A53. Compared to CondenseNet and NASNet (Mobile), DPP-Net achieves better performances: higher accuracy and shorter inference time on various devices. Additional experimental results show that models found by DPP-Net also achieve considerably-good performance on ImageNet as well.

* 13 pages 9 figures, ECCV 2018 Camera Ready 

  Click for Model/Code and Paper
Cube Padding for Weakly-Supervised Saliency Prediction in 360° Videos

Jun 04, 2018
Hsien-Tzu Cheng, Chun-Hung Chao, Jin-Dong Dong, Hao-Kai Wen, Tyng-Luh Liu, Min Sun

Automatic saliency prediction in 360{\deg} videos is critical for viewpoint guidance applications (e.g., Facebook 360 Guide). We propose a spatial-temporal network which is (1) weakly-supervised trained and (2) tailor-made for 360{\deg} viewing sphere. Note that most existing methods are less scalable since they rely on annotated saliency map for training. Most importantly, they convert 360{\deg} sphere to 2D images (e.g., a single equirectangular image or multiple separate Normal Field-of-View (NFoV) images) which introduces distortion and image boundaries. In contrast, we propose a simple and effective Cube Padding (CP) technique as follows. Firstly, we render the 360{\deg} view on six faces of a cube using perspective projection. Thus, it introduces very little distortion. Then, we concatenate all six faces while utilizing the connectivity between faces on the cube for image padding (i.e., Cube Padding) in convolution, pooling, convolutional LSTM layers. In this way, CP introduces no image boundary while being applicable to almost all Convolutional Neural Network (CNN) structures. To evaluate our method, we propose Wild-360, a new 360{\deg} video saliency dataset, containing challenging videos with saliency heatmap annotations. In experiments, our method outperforms baseline methods in both speed and quality.

* CVPR 2018 

  Click for Model/Code and Paper
Searching Toward Pareto-Optimal Device-Aware Neural Architectures

Aug 30, 2018
An-Chieh Cheng, Jin-Dong Dong, Chi-Hung Hsu, Shu-Huan Chang, Min Sun, Shih-Chieh Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, Da-Cheng Juan

Recent breakthroughs in Neural Architectural Search (NAS) have achieved state-of-the-art performance in many tasks such as image classification and language understanding. However, most existing works only optimize for model accuracy and largely ignore other important factors imposed by the underlying hardware and devices, such as latency and energy, when making inference. In this paper, we first introduce the problem of NAS and provide a survey on recent works. Then we deep dive into two recent advancements on extending NAS into multiple-objective frameworks: MONAS and DPP-Net. Both MONAS and DPP-Net are capable of optimizing accuracy and other objectives imposed by devices, searching for neural architectures that can be best deployed on a wide spectrum of devices: from embedded systems and mobile devices to workstations. Experimental results are poised to show that architectures found by MONAS and DPP-Net achieves Pareto optimality w.r.t the given objectives for various devices.

* ICCAD'18 Invited Paper 

  Click for Model/Code and Paper
Transfer Learning for Scientific Data Chain Extraction in Small Chemical Corpus with BERT-CRF Model

May 13, 2019
Na Pang, Li Qian, Weimin Lyu, Jin-Dong Yang

Computational chemistry develops fast in recent years due to the rapid growth and breakthroughs in AI. Thanks for the progress in natural language processing, researchers can extract more fine-grained knowledge in publications to stimulate the development in computational chemistry. While the works and corpora in chemical entity extraction have been restricted in the biomedicine or life science field instead of the chemistry field, we build a new corpus in chemical bond field annotated for 7 types of entities: compound, solvent, method, bond, reaction, pKa and pKa value. This paper presents a novel BERT-CRF model to build scientific chemical data chains by extracting 7 chemical entities and relations from publications. And we propose a joint model to extract the entities and relations simultaneously. Experimental results on our Chemical Special Corpus demonstrate that we achieve state-of-art and competitive NER performance.


  Click for Model/Code and Paper
HMM Specialization with Selective Lexicalization

Dec 23, 1999
Jin-Dong Kim, Sang-Zoo Lee, Hae-Chang Rim

We present a technique which complements Hidden Markov Models by incorporating some lexicalized states representing syntactically uncommon words. Our approach examines the distribution of transitions, selects the uncommon words, and makes lexicalized states for the words. We performed a part-of-speech tagging experiment on the Brown corpus to evaluate the resultant language model and discovered that this technique improved the tagging accuracy by 0.21% at the 95% level of confidence.

* Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, pp.121-127, 1999 
* 7 pages, 6 figures 

  Click for Model/Code and Paper
A Quantitative Evaluation of Natural Language Question Interpretation for Question Answering Systems

Sep 20, 2018
Takuto Asakura, Jin-Dong Kim, Yasunori Yamamoto, Yuka Tateisi, Toshihisa Takagi

Systematic benchmark evaluation plays an important role in the process of improving technologies for Question Answering (QA) systems. While currently there are a number of existing evaluation methods for natural language (NL) QA systems, most of them consider only the final answers, limiting their utility within a black box style evaluation. Herein, we propose a subdivided evaluation approach to enable finer-grained evaluation of QA systems, and present an evaluation tool which targets the NL question (NLQ) interpretation step, an initial step of a QA pipeline. The results of experiments using two public benchmark datasets suggest that we can get a deeper insight about the performance of a QA system using the proposed approach, which should provide a better guidance for improving the systems, than using black box style approaches.

* 16 pages, 6 figures, JIST 2018 

  Click for Model/Code and Paper