Research papers and code for "Jing Liao":
Facial caricature is an art form of drawing faces in an exaggerated way to convey humor or sarcasm. In this paper, we propose the first Generative Adversarial Network (GAN) for unpaired photo-to-caricature translation, which we call "CariGANs". It explicitly models geometric exaggeration and appearance stylization using two components: CariGeoGAN, which only models the geometry-to-geometry transformation from face photos to caricatures, and CariStyGAN, which transfers the style appearance from caricatures to face photos without any geometry deformation. In this way, a difficult cross-domain translation problem is decoupled into two easier tasks. The perceptual study shows that caricatures generated by our CariGANs are closer to the hand-drawn ones, and at the same time better persevere the identity, compared to state-of-the-art methods. Moreover, our CariGANs allow users to control the shape exaggeration degree and change the color/texture style by tuning the parameters or giving an example caricature.

* ACM Transactions on Graphics, Vol. 37, No. 6, Article 244. Publication date: November 2018
* To appear at SIGGRAPH Asia 2018
Click to Read Paper and Get Code
Geometric matching is a key step in computer vision tasks. Previous learning-based methods for geometric matching concentrate more on improving alignment quality, while we argue the importance of naturalness issue simultaneously. To deal with this, firstly, Pearson correlation is applied to handle large intra-class variations of features in feature matching stage. Then, we parametrize homography transformation with 9 parameters in full connected layer of our network, to better characterize large viewpoint variations compared with affine transformation. Furthermore, a novel loss function with Gaussian weights guarantees the model accuracy and efficiency in training procedure. Finally, we provide two choices for different purposes in geometric matching. When compositing homography with affine transformation, the alignment accuracy improves and all lines are preserved, which results in a more natural transformed image. When compositing homography with non-rigid thin-plate-spline transformation, the alignment accuracy further improves. Experimental results on Proposal Flow dataset show that our method outperforms state-of-the-art methods, both in terms of alignment accuracy and naturalness.

* 13 pages,4 figures
Click to Read Paper and Get Code
Seam-cutting and seam-driven techniques have been proven effective for handling imperfect image series in image stitching. Generally, seam-driven is to utilize seam-cutting to find a best seam from one or finite alignment hypotheses based on a predefined seam quality metric. However, the quality metrics in most methods are defined to measure the average performance of the pixels on the seam without considering the relevance and variance among them. This may cause that the seam with the minimal measure is not optimal (perception-inconsistent) in human perception. In this paper, we propose a novel coarse-to-fine seam estimation method which applies the evaluation in a different way. For pixels on the seam, we develop a patch-point evaluation algorithm concentrating more on the correlation and variation of them. The evaluations are then used to recalculate the difference map of the overlapping region and reestimate a stitching seam. This evaluation-reestimation procedure iterates until the current seam changes negligibly comparing with the previous seams. Experiments show that our proposed method can finally find a nearly perception-consistent seam after several iterations, which outperforms the conventional seam-cutting and other seam-driven methods.

* 5 pages, 4 figures
Click to Read Paper and Get Code
The seam-driven approach has been proven fairly effective for parallax-tolerant image stitching, whose strategy is to search for an invisible seam from finite representative hypotheses of local alignment. In this paper, we propose a graph-based hypothesis generation and a seam-guided local alignment for improving the effectiveness and the efficiency of the seam-driven approach. The experiment demonstrates the significant reduction of number of hypotheses and the improved quality of naturalness of final stitching results, comparing to the state-of-the-art method SEAGULL.

* 3 pages, 3 figures, 2 tables
Click to Read Paper and Get Code
A novel warp for natural image stitching is proposed that utilizes the property of cylindrical warp and a horizontal pixel selection strategy. The proposed ratio-preserving half-cylindrical warp is a combination of homography and cylindrical warps which guarantees alignment by homography and possesses less projective distortion by cylindrical warp. Unlike previous approaches applying cylindrical warp before homography, we use partition lines to divide the image into different parts and apply homography in the overlapping region while a composition of homography and cylindrical warps in the non-overlapping region. The pixel selection strategy then samples the points in horizontal and reconstructs the image via interpolation to further reduce horizontal distortion by maintaining the ratio as similarity. With applying half-cylindrical warp and horizontal pixel selection, the projective distortion in vertical and horizontal is mitigated simultaneously. Experiments show that our warp is efficient and produces a more natural-looking stitched result than previous methods.

* 3 pages, 5 figures
Click to Read Paper and Get Code
This paper introduces a novel method by reshuffling deep features (i.e., permuting the spacial locations of a feature map) of the style image for arbitrary style transfer. We theoretically prove that our new style loss based on reshuffle connects both global and local style losses respectively used by most parametric and non-parametric neural style transfer methods. This simple idea can effectively address the challenging issues in existing style transfer methods. On one hand, it can avoid distortions in local style patterns, and allow semantic-level transfer, compared with neural parametric methods. On the other hand, it can preserve globally similar appearance to the style image, and avoid wash-out artifacts, compared with neural non-parametric methods. Based on the proposed loss, we also present a progressive feature-domain optimization approach. The experiments show that our method is widely applicable to various styles, and produces better quality than existing methods.

Click to Read Paper and Get Code
We propose a new algorithm for color transfer between images that have perceptually similar semantic structures. We aim to achieve a more accurate color transfer that leverages semantically-meaningful dense correspondence between images. To accomplish this, our algorithm uses neural representations for matching. Additionally, the color transfer should be spatially-variant and globally coherent. Therefore, our algorithm optimizes a local linear model for color transfer satisfying both local and global constraints. Our proposed approach jointly optimize matching and color transfer, adopting a coarse-to-fine strategy. The proposed method can be successfully extended from "one-to-one" to "one-to-many" color transfers. The latter further addresses the problem of mismatching elements of the input image. We validate our proposed method by testing it on a large variety of image content.

Click to Read Paper and Get Code
Suffering from the multi-view data diversity and complexity for semi-supervised classification, most of existing graph convolutional networks focus on the networks architecture construction or the salient graph structure preservation, and ignore the the complete graph structure for semi-supervised classification contribution. To mine the more complete distribution structure from multi-view data with the consideration of the specificity and the commonality, we propose structure fusion based on graph convolutional networks (SF-GCN) for improving the performance of semi-supervised classification. SF-GCN can not only retain the special characteristic of each view data by spectral embedding, but also capture the common style of multi-view data by distance metric between multi-graph structures. Suppose the linear relationship between multi-graph structures, we can construct the optimization function of structure fusion model by balancing the specificity loss and the commonality loss. By solving this function, we can simultaneously obtain the fusion spectral embedding from the multi-view data and the fusion structure as adjacent matrix to input graph convolutional networks for semi-supervised classification. Experiments demonstrate that the performance of SF-GCN outperforms that of the state of the arts on three challenging datasets, which are Cora,Citeseer and Pubmed in citation networks.

Click to Read Paper and Get Code
We propose the first deep learning approach for exemplar-based local colorization. Given a reference color image, our convolutional neural network directly maps a grayscale image to an output colorized image. Rather than using hand-crafted rules as in traditional exemplar-based methods, our end-to-end colorization network learns how to select, propagate, and predict colors from the large-scale data. The approach performs robustly and generalizes well even when using reference images that are unrelated to the input grayscale image. More importantly, as opposed to other learning-based colorization methods, our network allows the user to achieve customizable results by simply feeding different references. In order to further reduce manual effort in selecting the references, the system automatically recommends references with our proposed image retrieval algorithm, which considers both semantic and luminance information. The colorization can be performed fully automatically by simply picking the top reference suggestion. Our approach is validated through a user study and favorable quantitative comparisons to the-state-of-the-art methods. Furthermore, our approach can be naturally extended to video colorization. Our code and models will be freely available for public use.

* To Appear in Siggraph 2018
Click to Read Paper and Get Code
This paper presents the first attempt at stereoscopic neural style transfer, which responds to the emerging demand for 3D movies or AR/VR. We start with a careful examination of applying existing monocular style transfer methods to left and right views of stereoscopic images separately. This reveals that the original disparity consistency cannot be well preserved in the final stylization results, which causes 3D fatigue to the viewers. To address this issue, we incorporate a new disparity loss into the widely adopted style loss function by enforcing the bidirectional disparity constraint in non-occluded regions. For a practical real-time solution, we propose the first feed-forward network by jointly training a stylization sub-network and a disparity sub-network, and integrate them in a feature level middle domain. Our disparity sub-network is also the first end-to-end network for simultaneous bidirectional disparity and occlusion mask estimation. Finally, our network is effectively extended to stereoscopic videos, by considering both temporal coherence and disparity consistency. We will show that the proposed method clearly outperforms the baseline algorithms both quantitatively and qualitatively.

* Accepted by CVPR2018
Click to Read Paper and Get Code
We propose a new technique for visual attribute transfer across images that may have very different appearance but have perceptually similar semantic structure. By visual attribute transfer, we mean transfer of visual information (such as color, tone, texture, and style) from one image to another. For example, one image could be that of a painting or a sketch while the other is a photo of a real scene, and both depict the same type of scene. Our technique finds semantically-meaningful dense correspondences between two input images. To accomplish this, it adapts the notion of "image analogy" with features extracted from a Deep Convolutional Neutral Network for matching; we call our technique Deep Image Analogy. A coarse-to-fine strategy is used to compute the nearest-neighbor field for generating the results. We validate the effectiveness of our proposed method in a variety of cases, including style/texture transfer, color/style swap, sketch/painting to photo, and time lapse.

* Accepted by SIGGRAPH 2017
Click to Read Paper and Get Code
We propose StyleBank, which is composed of multiple convolution filter banks and each filter bank explicitly represents one style, for neural image style transfer. To transfer an image to a specific style, the corresponding filter bank is operated on top of the intermediate feature embedding produced by a single auto-encoder. The StyleBank and the auto-encoder are jointly learnt, where the learning is conducted in such a way that the auto-encoder does not encode any style information thanks to the flexibility introduced by the explicit filter bank representation. It also enables us to conduct incremental learning to add a new image style by learning a new filter bank while holding the auto-encoder fixed. The explicit style representation along with the flexible network design enables us to fuse styles at not only the image level, but also the region level. Our method is the first style transfer network that links back to traditional texton mapping methods, and hence provides new understanding on neural style transfer. Our method is easy to train, runs in real-time, and produces results that qualitatively better or at least comparable to existing methods.

* Accepted by CVPR 2017, corrected typos
Click to Read Paper and Get Code
Training a feed-forward network for fast neural style transfer of images is proven to be successful. However, the naive extension to process video frame by frame is prone to producing flickering results. We propose the first end-to-end network for online video style transfer, which generates temporally coherent stylized video sequences in near real-time. Two key ideas include an efficient network by incorporating short-term coherence, and propagating short-term coherence to long-term, which ensures the consistency over larger period of time. Our network can incorporate different image stylization networks. We show that the proposed method clearly outperforms the per-frame baseline both qualitatively and quantitatively. Moreover, it can achieve visually comparable coherence to optimization-based video style transfer, but is three orders of magnitudes faster in runtime.

* Corrected typos
Click to Read Paper and Get Code
Caricature generation is an interesting yet challenging task. The primary goal is to generate plausible caricatures with reasonable exaggerations given face images. Conventional caricature generation approaches mainly use low-level geometric transformations such as image warping to generate exaggerated images, which lack richness and diversity in terms of content and style. The recent progress in generative adversarial networks (GANs) makes it possible to learn an image-to-image transformation from data, so that richer contents and styles can be generated. However, directly applying the GAN-based models to this task leads to unsatisfactory results because there is a large variance in the caricature distribution. Moreover, some models require strictly paired training data which largely limits their usage scenarios. In this paper, we propose CariGAN overcome these problems. Instead of training on paired data, CariGAN learns transformations only from weakly paired images. Specifically, to enforce reasonable exaggeration and facial deformation, facial landmarks are adopted as an additional condition to constrain the generated image. Furthermore, an attention mechanism is introduced to encourage our model to focus on the key facial parts so that more vivid details in these regions can be generated. Finally, a Diversity Loss is proposed to encourage the model to produce diverse results to help alleviate the `mode collapse' problem of the conventional GAN-based models. Extensive experiments on a new large-scale `WebCaricature' dataset show that the proposed CariGAN can generate more plausible caricatures with larger diversity compared with the state-of-the-art models.

* 12
Click to Read Paper and Get Code
We present a new video-based performance cloning technique. After training a deep generative network using a reference video capturing the appearance and dynamics of a target actor, we are able to generate videos where this actor reenacts other performances. All of the training data and the driving performances are provided as ordinary video segments, without motion capture or depth information. Our generative model is realized as a deep neural network with two branches, both of which train the same space-time conditional generator, using shared weights. One branch, responsible for learning to generate the appearance of the target actor in various poses, uses \emph{paired} training data, self-generated from the reference video. The second branch uses unpaired data to improve generation of temporally coherent video renditions of unseen pose sequences. We demonstrate a variety of promising results, where our method is able to generate temporally coherent videos, for challenging scenarios where the reference and driving videos consist of very different dance performances. Supplementary video: https://youtu.be/JpwsEeqNhhA.

Click to Read Paper and Get Code
Correspondence between images is a fundamental problem in computer vision, with a variety of graphics applications. This paper presents a novel method for sparse cross-domain correspondence. Our method is designed for pairs of images where the main objects of interest may belong to different semantic categories and differ drastically in shape and appearance, yet still contain semantically related or geometrically similar parts. Our approach operates on hierarchies of deep features, extracted from the input images by a pre-trained CNN. Specifically, starting from the coarsest layer in both hierarchies, we search for Neural Best Buddies (NBB): pairs of neurons that are mutual nearest neighbors. The key idea is then to percolate NBBs through the hierarchy, while narrowing down the search regions at each level and retaining only NBBs with significant activations. Furthermore, in order to overcome differences in appearance, each pair of search regions is transformed into a common appearance. We evaluate our method via a user study, in addition to comparisons with alternative correspondence approaches. The usefulness of our method is demonstrated using a variety of graphics applications, including cross-domain image alignment, creation of hybrid images, automatic image morphing, and more.

* SIGGRAPH 2018
Click to Read Paper and Get Code
Zero-shot Learning (ZSL) aims to recognize objects of the unseen classes, whose instances may not have been seen during training. It associates seen and unseen classes with the common semantic space and provides the visual features for each data instance. Most existing methods first learn a compatible projection function between the semantic space and the visual space based on the data of source seen classes, then directly apply it to target unseen classes. However, in real scenarios, the data distribution between the source and target domain might not match well, thus causing the well-known domain shift problem. Based on the observation that visual features of test instances can be separated into different clusters, we propose a visual structure constraint on class centers for transductive ZSL, to improve the generality of the projection function (i.e. alleviate the above domain shift problem). Specifically, two different strategies (symmetric Chamfer-distance and bipartite matching) are adopted to align the projected unseen semantic centers and visual cluster centers of test instances. Experiments on three widely used datasets demonstrate that the proposed visual structure constraint can bring substantial performance gain consistently and achieve state-of-the-art results.

* 10 pages
Click to Read Paper and Get Code
This paper presents the first end-to-end network for exemplar-based video colorization. The main challenge is to achieve temporal consistency while remaining faithful to the reference style. To address this issue, we introduce a recurrent framework that unifies the semantic correspondence and color propagation steps. Both steps allow a provided reference image to guide the colorization of every frame, thus reducing accumulated propagation errors. Video frames are colorized in sequence based on the colorization history, and its coherency is further enforced by the temporal consistency loss. All of these components, learned end-to-end, help produce realistic videos with good temporal stability. Experiments show our result is superior to the state-of-the-art methods both quantitatively and qualitatively.

Click to Read Paper and Get Code
Bitcoin is a cryptocurrency that features a distributed, decentralized and trustworthy mechanism, which has made Bitcoin a popular global transaction platform. The transaction efficiency among nations and the privacy benefiting from address anonymity of the Bitcoin network have attracted many activities such as payments, investments, gambling, and even money laundering in the past decade. Unfortunately, some criminal behaviors which took advantage of this platform were not identified. This has discouraged many governments to support cryptocurrency. Thus, the capability to identify criminal addresses becomes an important issue in the cryptocurrency network. In this paper, we propose new features in addition to those commonly used in the literature to build a classification model for detecting abnormality of Bitcoin network addresses. These features include various high orders of moments of transaction time (represented by block height) which summarizes the transaction history in an efficient way. The extracted features are trained by supervised machine learning methods on a labeling category data set. The experimental evaluation shows that these features have improved the performance of Bitcoin address classification significantly. We evaluate the results under eight classifiers and achieve the highest Micro-F1/Macro-F1 of 87%/86% with LightGBM.

* 8 pages; accepted by ICBC 2019
Click to Read Paper and Get Code
Image dehazing aims to recover the uncorrupted content from a hazy image. Instead of leveraging traditional low-level or handcrafted image priors as the restoration constraints, e.g., dark channels and increased contrast, we propose an end-to-end gated context aggregation network to directly restore the final haze-free image. In this network, we adopt the latest smoothed dilation technique to help remove the gridding artifacts caused by the widely-used dilated convolution with negligible extra parameters, and leverage a gated sub-network to fuse the features from different levels. Extensive experiments demonstrate that our method can surpass previous state-of-the-art methods by a large margin both quantitatively and qualitatively. In addition, to demonstrate the generality of the proposed method, we further apply it to the image deraining task, which also achieves the state-of-the-art performance.

* Accepted by WACV 2019
Click to Read Paper and Get Code