Models, code, and papers for "Jingxuan Wen":

Pre-training of Context-aware Item Representation for Next Basket Recommendation

Apr 14, 2019
Jingxuan Yang, Jun Xu, Jianzhuo Tong, Sheng Gao, Jun Guo, Jirong Wen

Next basket recommendation, which aims to predict the next a few items that a user most probably purchases given his historical transactions, plays a vital role in market basket analysis. From the viewpoint of item, an item could be purchased by different users together with different items, for different reasons. Therefore, an ideal recommender system should represent an item considering its transaction contexts. Existing state-of-the-art deep learning methods usually adopt the static item representations, which are invariant among all of the transactions and thus cannot achieve the full potentials of deep learning. Inspired by the pre-trained representations of BERT in natural language processing, we propose to conduct context-aware item representation for next basket recommendation, called Item Encoder Representations from Transformers (IERT). In the offline phase, IERT pre-trains deep item representations conditioning on their transaction contexts. In the online recommendation phase, the pre-trained model is further fine-tuned with an additional output layer. The output contextualized item embeddings are used to capture users' sequential behaviors and general tastes to conduct recommendation. Experimental results on the Ta-Feng data set show that IERT outperforms the state-of-the-art baseline methods, which demonstrated the effectiveness of IERT in next basket representation.


  Click for Model/Code and Paper
ICFVR 2017: 3rd International Competition on Finger Vein Recognition

Jan 04, 2018
Yi Zhang, Houjun Huang, Haifeng Zhang, Liao Ni, Wei Xu, Nasir Uddin Ahmed, Md. Shakil Ahmed, Yilun Jin, Yingjie Chen, Jingxuan Wen, Wenxin Li

In recent years, finger vein recognition has become an important sub-field in biometrics and been applied to real-world applications. The development of finger vein recognition algorithms heavily depends on large-scale real-world data sets. In order to motivate research on finger vein recognition, we released the largest finger vein data set up to now and hold finger vein recognition competitions based on our data set every year. In 2017, International Competition on Finger Vein Recognition(ICFVR) is held jointly with IJCB 2017. 11 teams registered and 10 of them joined the final evaluation. The winner of this year dramatically improved the EER from 2.64% to 0.483% compared to the winner of last year. In this paper, we introduce the process and results of ICFVR 2017 and give insights on development of state-of-art finger vein recognition algorithms.

* 8 pages, 15 figures 

  Click for Model/Code and Paper
Recovering Dropped Pronouns in Chinese Conversations via Modeling Their Referents

May 17, 2019
Jingxuan Yang, Jianzhuo Tong, Si Li, Sheng Gao, Jun Guo, Nianwen Xue

Pronouns are often dropped in Chinese sentences, and this happens more frequently in conversational genres as their referents can be easily understood from context. Recovering dropped pronouns is essential to applications such as Information Extraction where the referents of these dropped pronouns need to be resolved, or Machine Translation when Chinese is the source language. In this work, we present a novel end-to-end neural network model to recover dropped pronouns in conversational data. Our model is based on a structured attention mechanism that models the referents of dropped pronouns utilizing both sentence-level and word-level information. Results on three different conversational genres show that our approach achieves a significant improvement over the current state of the art.

* accepted by NAACL 2019 

  Click for Model/Code and Paper