Research papers and code for "Jun Xing":
We present sparse topical coding (STC), a non-probabilistic formulation of topic models for discovering latent representations of large collections of data. Unlike probabilistic topic models, STC relaxes the normalization constraint of admixture proportions and the constraint of defining a normalized likelihood function. Such relaxations make STC amenable to: 1) directly control the sparsity of inferred representations by using sparsity-inducing regularizers; 2) be seamlessly integrated with a convex error function (e.g., SVM hinge loss) for supervised learning; and 3) be efficiently learned with a simply structured coordinate descent algorithm. Our results demonstrate the advantages of STC and supervised MedSTC on identifying topical meanings of words and improving classification accuracy and time efficiency.

Click to Read Paper and Get Code
In this paper, we present a novel and general framework called {\it Maximum Entropy Discrimination Markov Networks} (MaxEnDNet), which integrates the max-margin structured learning and Bayesian-style estimation and combines and extends their merits. Major innovations of this model include: 1) It generalizes the extant Markov network prediction rule based on a point estimator of weights to a Bayesian-style estimator that integrates over a learned distribution of the weights. 2) It extends the conventional max-entropy discrimination learning of classification rule to a new structural max-entropy discrimination paradigm of learning the distribution of Markov networks. 3) It subsumes the well-known and powerful Maximum Margin Markov network (M$^3$N) as a special case, and leads to a model similar to an $L_1$-regularized M$^3$N that is simultaneously primal and dual sparse, or other types of Markov network by plugging in different prior distributions of the weights. 4) It offers a simple inference algorithm that combines existing variational inference and convex-optimization based M$^3$N solvers as subroutines. 5) It offers a PAC-Bayesian style generalization bound. This work represents the first successful attempt to combine Bayesian-style learning (based on generative models) with structured maximum margin learning (based on a discriminative model), and outperforms a wide array of competing methods for structured input/output learning on both synthetic and real data sets.

* Journal of Machine Learning Research, 10(Nov):2531-2569, 2009
* 39 pages
Click to Read Paper and Get Code
To address three important issues involved in latent variable models (LVMs), including capturing infrequent patterns, achieving small-sized but expressive models and alleviating overfitting, several studies have been devoted to "diversifying" LVMs, which aim at encouraging the components in LVMs to be diverse. Most existing studies fall into a frequentist-style regularization framework, where the components are learned via point estimation. In this paper, we investigate how to "diversify" LVMs in the paradigm of Bayesian learning. We propose two approaches that have complementary advantages. One is to define a diversity-promoting mutual angular prior which assigns larger density to components with larger mutual angles and use this prior to affect the posterior via Bayes' rule. We develop two efficient approximate posterior inference algorithms based on variational inference and MCMC sampling. The other approach is to impose diversity-promoting regularization directly over the post-data distribution of components. We also extend our approach to "diversify" Bayesian nonparametric models where the number of components is infinite. A sampling algorithm based on slice sampling and Hamiltonian Monte Carlo is developed. We apply these methods to "diversify" Bayesian mixture of experts model and infinite latent feature model. Experiments on various datasets demonstrate the effectiveness and efficiency of our methods.

Click to Read Paper and Get Code
Existing Bayesian models, especially nonparametric Bayesian methods, rely on specially conceived priors to incorporate domain knowledge for discovering improved latent representations. While priors can affect posterior distributions through Bayes' rule, imposing posterior regularization is arguably more direct and in some cases more natural and general. In this paper, we present regularized Bayesian inference (RegBayes), a novel computational framework that performs posterior inference with a regularization term on the desired post-data posterior distribution under an information theoretical formulation. RegBayes is more flexible than the procedure that elicits expert knowledge via priors, and it covers both directed Bayesian networks and undirected Markov networks whose Bayesian formulation results in hybrid chain graph models. When the regularization is induced from a linear operator on the posterior distributions, such as the expectation operator, we present a general convex-analysis theorem to characterize the solution of RegBayes. Furthermore, we present two concrete examples of RegBayes, infinite latent support vector machines (iLSVM) and multi-task infinite latent support vector machines (MT-iLSVM), which explore the large-margin idea in combination with a nonparametric Bayesian model for discovering predictive latent features for classification and multi-task learning, respectively. We present efficient inference methods and report empirical studies on several benchmark datasets, which appear to demonstrate the merits inherited from both large-margin learning and Bayesian nonparametrics. Such results were not available until now, and contribute to push forward the interface between these two important subfields, which have been largely treated as isolated in the community.

* 49 pages, 11 figures
Click to Read Paper and Get Code
Supervised topic models utilize document's side information for discovering predictive low dimensional representations of documents. Existing models apply the likelihood-based estimation. In this paper, we present a general framework of max-margin supervised topic models for both continuous and categorical response variables. Our approach, the maximum entropy discrimination latent Dirichlet allocation (MedLDA), utilizes the max-margin principle to train supervised topic models and estimate predictive topic representations that are arguably more suitable for prediction tasks. The general principle of MedLDA can be applied to perform joint max-margin learning and maximum likelihood estimation for arbitrary topic models, directed or undirected, and supervised or unsupervised, when the supervised side information is available. We develop efficient variational methods for posterior inference and parameter estimation, and demonstrate qualitatively and quantitatively the advantages of MedLDA over likelihood-based topic models on movie review and 20 Newsgroups data sets.

* Journal of Machine Learning Research, 13(Aug): 2237--2278, 2012
* 27 Pages
Click to Read Paper and Get Code
Understanding how brain functions has been an intriguing topic for years. With the recent progress on collecting massive data and developing advanced technology, people have become interested in addressing the challenge of decoding brain wave data into meaningful mind states, with many machine learning models and algorithms being revisited and developed, especially the ones that handle time series data because of the nature of brain waves. However, many of these time series models, like HMM with hidden state in discrete space or State Space Model with hidden state in continuous space, only work with one source of data and cannot handle different sources of information simultaneously. In this paper, we propose an extension of State Space Model to work with different sources of information together with its learning and inference algorithms. We apply this model to decode the mind state of students during lectures based on their brain waves and reach a significant better results compared to traditional methods.

* 11 pages, 2 figures, NIPS 2016 Time Series Workshop
Click to Read Paper and Get Code
In this paper, we consider the problem of low-rank phase retrieval whose objective is to estimate a complex low-rank matrix from magnitude-only measurements. We propose a hierarchical prior model for low-rank phase retrieval, in which a Gaussian-Wishart hierarchical prior is placed on the underlying low-rank matrix to promote the low-rankness of the matrix. Based on the proposed hierarchical model, a variational expectation-maximization (EM) algorithm is developed. The proposed method is less sensitive to the choice of the initialization point and works well with random initialization. Simulation results are provided to illustrate the effectiveness of the proposed algorithm.

Click to Read Paper and Get Code
In this paper, we consider the block-sparse signals recovery problem in the context of multiple measurement vectors (MMV) with common row sparsity patterns. We develop a new method for recovery of common row sparsity MMV signals, where a pattern-coupled hierarchical Gaussian prior model is introduced to characterize both the block-sparsity of the coefficients and the statistical dependency between neighboring coefficients of the common row sparsity MMV signals. Unlike many other methods, the proposed method is able to automatically capture the block sparse structure of the unknown signal. Our method is developed using an expectation-maximization (EM) framework. Simulation results show that our proposed method offers competitive performance in recovering block-sparse common row sparsity pattern MMV signals.

Click to Read Paper and Get Code
Multiple clustering aims at discovering diverse ways of organizing data into clusters. Despite the progress made, it's still a challenge for users to analyze and understand the distinctive structure of each output clustering. To ease this process, we consider diverse clusterings embedded in different subspaces, and analyze the embedding subspaces to shed light into the structure of each clustering. To this end, we provide a two-stage approach called MISC (Multiple Independent Subspace Clusterings). In the first stage, MISC uses independent subspace analysis to seek multiple and statistical independent (i.e. non-redundant) subspaces, and determines the number of subspaces via the minimum description length principle. In the second stage, to account for the intrinsic geometric structure of samples embedded in each subspace, MISC performs graph regularized semi-nonnegative matrix factorization to explore clusters. It additionally integrates the kernel trick into matrix factorization to handle non-linearly separable clusters. Experimental results on synthetic datasets show that MISC can find different interesting clusterings from the sought independent subspaces, and it also outperforms other related and competitive approaches on real-world datasets.

* AAAI2019
Click to Read Paper and Get Code
Multi-view Multi-instance Multi-label Learning(M3L) deals with complex objects encompassing diverse instances, represented with different feature views, and annotated with multiple labels. Existing M3L solutions only partially explore the inter or intra relations between objects (or bags), instances, and labels, which can convey important contextual information for M3L. As such, they may have a compromised performance. In this paper, we propose a collaborative matrix factorization based solution called M3Lcmf. M3Lcmf first uses a heterogeneous network composed of nodes of bags, instances, and labels, to encode different types of relations via multiple relational data matrices. To preserve the intrinsic structure of the data matrices, M3Lcmf collaboratively factorizes them into low-rank matrices, explores the latent relationships between bags, instances, and labels, and selectively merges the data matrices. An aggregation scheme is further introduced to aggregate the instance-level labels into bag-level and to guide the factorization. An empirical study on benchmark datasets show that M3Lcmf outperforms other related competitive solutions both in the instance-level and bag-level prediction.

* 8 pages, 8 figures, uses aaai19.sty, accepted to AAAI2019
Click to Read Paper and Get Code
Three-dimensional object recognition has recently achieved great progress thanks to the development of effective point cloud-based learning frameworks, such as PointNet and its extensions. However, existing methods rely heavily on fully connected layers, which introduce a significant amount of parameters, making the network harder to train and prone to overfitting problems. In this paper, we propose a simple yet effective framework for point set feature learning by leveraging a nonlinear activation layer encoded by Radial Basis Function (RBF) kernels. Unlike PointNet variants, that fail to recognize local point patterns, our approach explicitly models the spatial distribution of point clouds by aggregating features from sparsely distributed RBF kernels. A typical RBF kernel, e.g. Gaussian function, naturally penalizes long-distance response and is only activated by neighboring points. Such localized response generates highly discriminative features given different point distributions. In addition, our framework allows the joint optimization of kernel distribution and its receptive field, automatically evolving kernel configurations in an end-to-end manner. We demonstrate that the proposed network with a single RBF layer can outperform the state-of-the-art Pointnet++ in terms of classification accuracy for 3D object recognition tasks. Moreover, the introduction of nonlinear mappings significantly reduces the number of network parameters and computational cost, enabling significantly faster training and a deployable point cloud recognition solution on portable devices with limited resources.

* Technical Report
Click to Read Paper and Get Code
Deep learning based computer vision fails to work when labeled images are scarce. Recently, Meta learning algorithm has been confirmed as a promising way to improve the ability of learning from few images for computer vision. However, previous Meta learning approaches expose problems: 1) they ignored the importance of attention mechanism for the Meta learner; 2) they didn't give the Meta learner the ability of well using the past knowledge which can help to express images into high representations, resulting in that the Meta learner has to solve few shot learning task directly from the original high dimensional RGB images. In this paper, we argue that the attention mechanism and the past knowledge are crucial for the Meta learner, and the Meta learner should be trained on high representations of the RGB images instead of directly on the original ones. Based on these arguments, we propose two methods: Attention augmented Meta Learning (AML) and Representation based and Attention augmented Meta Learning(RAML). The method AML aims to improve the Meta learner's attention ability by explicitly embedding an attention model into its network. The method RAML aims to give the Meta learner the ability of leveraging the past learned knowledge to reduce the dimension of the original input data by expressing it into high representations, and help the Meta learner to perform well. Extensive experiments demonstrate the effectiveness of the proposed models, with state-of-the-art few shot learning performances on several few shot learning benchmarks. The source code of our proposed methods will be released soon to facilitate further studies on those aforementioned problem.

* 10 pages, 6 figures
Click to Read Paper and Get Code
In this paper we first analyzed the inductive bias underlying the data scattered across complex free energy landscapes (FEL), and exploited it to train deep neural networks which yield reduced and clustered representation for the FEL. Our parametric method, called Information Distilling of Metastability (IDM), is end-to-end differentiable thus scalable to ultra-large dataset. IDM is also a clustering algorithm and is able to cluster the samples in the meantime of reducing the dimensions. Besides, as an unsupervised learning method, IDM differs from many existing dimensionality reduction and clustering methods in that it neither requires a cherry-picked distance metric nor the ground-true number of clusters, and that it can be used to unroll and zoom-in the hierarchical FEL with respect to different timescales. Through multiple experiments, we show that IDM can achieve physically meaningful representations which partition the FEL into well-defined metastable states hence are amenable for downstream tasks such as mechanism analysis and kinetic modeling.

* 6 figures, 1 table in the main text
Click to Read Paper and Get Code
We study the problem of conditional generative modeling based on designated semantics or structures. Existing models that build conditional generators either require massive labeled instances as supervision or are unable to accurately control the semantics of generated samples. We propose structured generative adversarial networks (SGANs) for semi-supervised conditional generative modeling. SGAN assumes the data x is generated conditioned on two independent latent variables: y that encodes the designated semantics, and z that contains other factors of variation. To ensure disentangled semantics in y and z, SGAN builds two collaborative games in the hidden space to minimize the reconstruction error of y and z, respectively. Training SGAN also involves solving two adversarial games that have their equilibrium concentrating at the true joint data distributions p(x, z) and p(x, y), avoiding distributing the probability mass diffusely over data space that MLE-based methods may suffer. We assess SGAN by evaluating its trained networks, and its performance on downstream tasks. We show that SGAN delivers a highly controllable generator, and disentangled representations; it also establishes start-of-the-art results across multiple datasets when applied for semi-supervised image classification (1.27%, 5.73%, 17.26% error rates on MNIST, SVHN and CIFAR-10 using 50, 1000 and 4000 labels, respectively). Benefiting from the separate modeling of y and z, SGAN can generate images with high visual quality and strictly following the designated semantic, and can be extended to a wide spectrum of applications, such as style transfer.

* To appear in NIPS 2017
Click to Read Paper and Get Code
We present a novel deep learning approach to synthesize complete face images in the presence of large ocular region occlusions. This is motivated by recent surge of VR/AR displays that hinder face-to-face communications. Different from the state-of-the-art face inpainting methods that have no control over the synthesized content and can only handle frontal face pose, our approach can faithfully recover the missing content under various head poses while preserving the identity. At the core of our method is a novel generative network with dedicated constraints to regularize the synthesis process. To preserve the identity, our network takes an arbitrary occlusion-free image of the target identity to infer the missing content, and its high-level CNN features as an identity prior to regularize the searching space of generator. Since the input reference image may have a different pose, a pose map and a novel pose discriminator are further adopted to supervise the learning of implicit pose transformations. Our method is capable of generating coherent facial inpainting with consistent identity over videos with large variations of head motions. Experiments on both synthesized and real data demonstrate that our method greatly outperforms the state-of-the-art methods in terms of both synthesis quality and robustness.

* The British Machine Vision Conference (BMVC) 2018
* 12 pages,9 figures
Click to Read Paper and Get Code
Near-range portrait photographs often contain perspective distortion artifacts that bias human perception and challenge both facial recognition and reconstruction techniques. We present the first deep learning based approach to remove such artifacts from unconstrained portraits. In contrast to the previous state-of-the-art approach, our method handles even portraits with extreme perspective distortion, as we avoid the inaccurate and error-prone step of first fitting a 3D face model. Instead, we predict a distortion correction flow map that encodes a per-pixel displacement that removes distortion artifacts when applied to the input image. Our method also automatically infers missing facial features, i.e. occluded ears caused by strong perspective distortion, with coherent details. We demonstrate that our approach significantly outperforms the previous state-of-the-art both qualitatively and quantitatively, particularly for portraits with extreme perspective distortion or facial expressions. We further show that our technique benefits a number of fundamental tasks, significantly improving the accuracy of both face recognition and 3D reconstruction and enables a novel camera calibration technique from a single portrait. Moreover, we also build the first perspective portrait database with a large diversity in identities, expression and poses, which will benefit the related research in this area.

* 13 pages, 15 figures
Click to Read Paper and Get Code
Absorption, distribution, metabolism, and excretion (ADME) studies are critical for drug discovery. Conventionally, these tasks, together with other chemical property predictions, rely on domain-specific feature descriptors, or fingerprints. Following the recent success of neural networks, we developed Chemi-Net, a completely data-driven, domain knowledge-free, deep learning method for ADME property prediction. To compare the relative performance of Chemi-Net with Cubist, one of the popular machine learning programs used by Amgen, a large-scale ADME property prediction study was performed on-site at Amgen. The results showed that our deep neural network method improved current methods by a large margin. We foresee that the significantly increased accuracy of ADME prediction seen with Chemi-Net over Cubist will greatly accelerate drug discovery.

Click to Read Paper and Get Code
We present AliMe Assist, an intelligent assistant designed for creating an innovative online shopping experience in E-commerce. Based on question answering (QA), AliMe Assist offers assistance service, customer service, and chatting service. It is able to take voice and text input, incorporate context to QA, and support multi-round interaction. Currently, it serves millions of customer questions per day and is able to address 85% of them. In this paper, we demonstrate the system, present the underlying techniques, and share our experience in dealing with real-world QA in the E-commerce field.

Click to Read Paper and Get Code
In this paper, we propose a novel scene text detection method named TextMountain. The key idea of TextMountain is making full use of border-center information. Different from previous works that treat center-border as a binary classification problem, we predict text center-border probability (TCBP) and text center-direction (TCD). The TCBP is just like a mountain whose top is text center and foot is text border. The mountaintop can separate text instances which cannot be easily achieved using semantic segmentation map and its rising direction can plan a road to top for each pixel on mountain foot at the group stage. The TCD helps TCBP learning better. Our label rules will not lead to the ambiguous problem with the transformation of angle, so the proposed method is robust to multi-oriented text and can also handle well with curved text. In inference stage, each pixel at the mountain foot needs to search the path to the mountaintop and this process can be efficiently completed in parallel, yielding the efficiency of our method compared with others. The experiments on MLT, ICDAR2015, RCTW-17 and SCUT-CTW1500 databases demonstrate that the proposed method achieves better or comparable performance in terms of both accuracy and efficiency. It is worth mentioning our method achieves an F-measure of 76.85% on MLT which outperforms the previous methods by a large margin. Code will be made available.

Click to Read Paper and Get Code
Traditional text detection methods mostly focus on quadrangle text. In this study we propose a novel method named sliding line point regression (SLPR) in order to detect arbitrary-shape text in natural scene. SLPR regresses multiple points on the edge of text line and then utilizes these points to sketch the outlines of the text. The proposed SLPR can be adapted to many object detection architectures such as Faster R-CNN and R-FCN. Specifically, we first generate the smallest rectangular box including the text with region proposal network (RPN), then isometrically regress the points on the edge of text by using the vertically and horizontally sliding lines. To make full use of information and reduce redundancy, we calculate x-coordinate or y-coordinate of target point by the rectangular box position, and just regress the remaining y-coordinate or x-coordinate. Accordingly we can not only reduce the parameters of system, but also restrain the points which will generate more regular polygon. Our approach achieved competitive results on traditional ICDAR2015 Incidental Scene Text benchmark and curve text detection dataset CTW1500.

Click to Read Paper and Get Code