Models, code, and papers for "Karttikeya Mangalam":

On Compressing U-net Using Knowledge Distillation

Dec 01, 2018
Karttikeya Mangalam, Mathieu Salzamann

We study the use of knowledge distillation to compress the U-net architecture. We show that, while standard distillation is not sufficient to reliably train a compressed U-net, introducing other regularization methods, such as batch normalization and class re-weighting, in knowledge distillation significantly improves the training process. This allows us to compress a U-net by over 1000x, i.e., to 0.1% of its original number of parameters, at a negligible decrease in performance.

* 4 pages, 1 figure 

  Click for Model/Code and Paper
Learning Spontaneity to Improve Emotion Recognition In Speech

Jun 13, 2018
Karttikeya Mangalam, Tanaya Guha

We investigate the effect and usefulness of spontaneity (i.e. whether a given speech is spontaneous or not) in speech in the context of emotion recognition. We hypothesize that emotional content in speech is interrelated with its spontaneity, and use spontaneity classification as an auxiliary task to the problem of emotion recognition. We propose two supervised learning settings that utilize spontaneity to improve speech emotion recognition: a hierarchical model that performs spontaneity detection before performing emotion recognition, and a multitask learning model that jointly learns to recognize both spontaneity and emotion. Through various experiments on the well known IEMOCAP database, we show that by using spontaneity detection as an additional task, significant improvement can be achieved over emotion recognition systems that are unaware of spontaneity. We achieve state-of-the-art emotion recognition accuracy (4-class, 69.1%) on the IEMOCAP database outperforming several relevant and competitive baselines.

* Accepted at Interspeech 2018 

  Click for Model/Code and Paper
Bitwise Operations of Cellular Automaton on Gray-scale Images

May 19, 2017
Karttikeya Mangalam, K S Venkatesh

Cellular Automata (CA) theory is a discrete model that represents the state of each of its cells from a finite set of possible values which evolve in time according to a pre-defined set of transition rules. CA have been applied to a number of image processing tasks such as Convex Hull Detection, Image Denoising etc. but mostly under the limitation of restricting the input to binary images. In general, a gray-scale image may be converted to a number of different binary images which are finally recombined after CA operations on each of them individually. We have developed a multinomial regression based weighed summation method to recombine binary images for better performance of CA based Image Processing algorithms. The recombination algorithm is tested for the specific case of denoising Salt and Pepper Noise to test against standard benchmark algorithms such as the Median Filter for various images and noise levels. The results indicate several interesting invariances in the application of the CA, such as the particular noise realization and the choice of sub-sampling of pixels to determine recombination weights. Additionally, it appears that simpler algorithms for weight optimization which seek local minima work as effectively as those that seek global minima such as Simulated Annealing.

* 5 Pages. The code is available at : 

  Click for Model/Code and Paper
Future Person Localization in First-Person Videos

Mar 28, 2018
Takuma Yagi, Karttikeya Mangalam, Ryo Yonetani, Yoichi Sato

We present a new task that predicts future locations of people observed in first-person videos. Consider a first-person video stream continuously recorded by a wearable camera. Given a short clip of a person that is extracted from the complete stream, we aim to predict that person's location in future frames. To facilitate this future person localization ability, we make the following three key observations: a) First-person videos typically involve significant ego-motion which greatly affects the location of the target person in future frames; b) Scales of the target person act as a salient cue to estimate a perspective effect in first-person videos; c) First-person videos often capture people up-close, making it easier to leverage target poses (e.g., where they look) for predicting their future locations. We incorporate these three observations into a prediction framework with a multi-stream convolution-deconvolution architecture. Experimental results reveal our method to be effective on our new dataset as well as on a public social interaction dataset.

* Accepted to CVPR 2018 

  Click for Model/Code and Paper