Models, code, and papers for "Kelsey Allen":

Residual Policy Learning

Jan 03, 2019
Tom Silver, Kelsey Allen, Josh Tenenbaum, Leslie Kaelbling

We present Residual Policy Learning (RPL): a simple method for improving nondifferentiable policies using model-free deep reinforcement learning. RPL thrives in complex robotic manipulation tasks where good but imperfect controllers are available. In these tasks, reinforcement learning from scratch remains data-inefficient or intractable, but learning a residual on top of the initial controller can yield substantial improvements. We study RPL in six challenging MuJoCo tasks involving partial observability, sensor noise, model misspecification, and controller miscalibration. For initial controllers, we consider both hand-designed policies and model-predictive controllers with known or learned transition models. By combining learning with control algorithms, RPL can perform long-horizon, sparse-reward tasks for which reinforcement learning alone fails. Moreover, we find that RPL consistently and substantially improves on the initial controllers. We argue that RPL is a promising approach for combining the complementary strengths of deep reinforcement learning and robotic control, pushing the boundaries of what either can achieve independently. Video and code at

  Click for Model/Code and Paper
The Tools Challenge: Rapid Trial-and-Error Learning in Physical Problem Solving

Jul 25, 2019
Kelsey R. Allen, Kevin A. Smith, Joshua B. Tenenbaum

Many animals, and an increasing number of artificial agents, display sophisticated capabilities to perceive and manipulate objects. But human beings remain distinctive in their capacity for flexible, creative tool use -- using objects in new ways to act on the world, achieve a goal, or solve a problem. Here we introduce the "Tools" game, a simple but challenging domain for studying this behavior in human and artificial agents. Players place objects in a dynamic scene to accomplish a goal that can only be achieved if those objects interact with other scene elements in appropriate ways: for instance, launching, blocking, supporting or tipping them. Only a few attempts are permitted, requiring rapid trial-and-error learning if a solution is not found at first. We propose a "Sample, Simulate, Update" (SSUP) framework for modeling how people solve these challenges, based on exploiting rich world knowledge to sample actions that would lead to successful outcomes, simulate candidate actions before trying them out, and update beliefs about which tools and actions are best in a rapid learning loop. SSUP captures human performance well across 20 levels of the Tools game, and fits significantly better than alternate accounts based on deep reinforcement learning or learning the simulator parameters online. We discuss how the Tools challenge might guide the development of better physical reasoning agents in AI, as well as better accounts of human physical reasoning and tool use.

* This manuscript is an extended version of a paper "Rapid Trial-and-Error Learning in Physical Problem Solving" accepted for oral presentation at the 41st Annual Meeting of the Cognitive Science Society (2019). It represents ongoing work on the part of the authors 

  Click for Model/Code and Paper
Infinite Mixture Prototypes for Few-Shot Learning

Feb 12, 2019
Kelsey R. Allen, Evan Shelhamer, Hanul Shin, Joshua B. Tenenbaum

We propose infinite mixture prototypes to adaptively represent both simple and complex data distributions for few-shot learning. Our infinite mixture prototypes represent each class by a set of clusters, unlike existing prototypical methods that represent each class by a single cluster. By inferring the number of clusters, infinite mixture prototypes interpolate between nearest neighbor and prototypical representations, which improves accuracy and robustness in the few-shot regime. We show the importance of adaptive capacity for capturing complex data distributions such as alphabets, with 25% absolute accuracy improvements over prototypical networks, while still maintaining or improving accuracy on the standard Omniglot and mini-ImageNet benchmarks. In clustering labeled and unlabeled data by the same clustering rule, infinite mixture prototypes achieves state-of-the-art semi-supervised accuracy. As a further capability, we show that infinite mixture prototypes can perform purely unsupervised clustering, unlike existing prototypical methods.

  Click for Model/Code and Paper
Few-Shot Bayesian Imitation Learning with Logic over Programs

Apr 12, 2019
Tom Silver, Kelsey R. Allen, Alex K. Lew, Leslie Pack Kaelbling, Josh Tenenbaum

We describe an expressive class of policies that can be efficiently learned from a few demonstrations. Policies are represented as logical combinations of programs drawn from a small domain-specific language (DSL). We define a prior over policies with a probabilistic grammar and derive an approximate Bayesian inference algorithm to learn policies from demonstrations. In experiments, we study five strategy games played on a 2D grid with one shared DSL. After a few demonstrations of each game, the inferred policies generalize to new game instances that differ substantially from the demonstrations. We argue that the proposed method is an apt choice for policy learning tasks that have scarce training data and feature significant, structured variation between task instances.

  Click for Model/Code and Paper
Relational inductive bias for physical construction in humans and machines

Jun 04, 2018
Jessica B. Hamrick, Kelsey R. Allen, Victor Bapst, Tina Zhu, Kevin R. McKee, Joshua B. Tenenbaum, Peter W. Battaglia

While current deep learning systems excel at tasks such as object classification, language processing, and gameplay, few can construct or modify a complex system such as a tower of blocks. We hypothesize that what these systems lack is a "relational inductive bias": a capacity for reasoning about inter-object relations and making choices over a structured description of a scene. To test this hypothesis, we focus on a task that involves gluing pairs of blocks together to stabilize a tower, and quantify how well humans perform. We then introduce a deep reinforcement learning agent which uses object- and relation-centric scene and policy representations and apply it to the task. Our results show that these structured representations allow the agent to outperform both humans and more naive approaches, suggesting that relational inductive bias is an important component in solving structured reasoning problems and for building more intelligent, flexible machines.

* In Proceedings of the Annual Meeting of the Cognitive Science Society (CogSci 2018) 

  Click for Model/Code and Paper
Relational inductive biases, deep learning, and graph networks

Oct 17, 2018
Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, Razvan Pascanu

Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond one's experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between "hand-engineering" and "end-to-end" learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning. As a companion to this paper, we have released an open-source software library for building graph networks, with demonstrations of how to use them in practice.

  Click for Model/Code and Paper
A framework for large-scale distributed AI search across disconnected heterogeneous infrastructures

Sep 16, 2012
Lars Kotthoff, Tom Kelsey, Martin McCaffery

We present a framework for a large-scale distributed eScience Artificial Intelligence search. Our approach is generic and can be used for many different problems. Unlike many other approaches, we do not require dedicated machines, homogeneous infrastructure or the ability to communicate between nodes. We give special consideration to the robustness of the framework, minimising the loss of effort even after total loss of infrastructure, and allowing easy verification of every step of the distribution process. In contrast to most eScience applications, the input data and specification of the problem is very small, being easily given in a paragraph of text. The unique challenges our framework tackles are related to the combinatorial explosion of the space that contains the possible solutions and the robustness of long-running computations. Not only is the time required to finish the computations unknown, but also the resource requirements may change during the course of the computation. We demonstrate the applicability of our framework by using it to solve a challenging and hitherto open problem in computational mathematics. The results demonstrate that our approach easily scales to computations of a size that would have been impossible to tackle in practice just a decade ago.

* 18 pages plus references. arXiv admin note: substantial text overlap with arXiv:1008.4328 

  Click for Model/Code and Paper
Fast, Autonomous Flight in GPS-Denied and Cluttered Environments

Dec 06, 2017
Kartik Mohta, Michael Watterson, Yash Mulgaonkar, Sikang Liu, Chao Qu, Anurag Makineni, Kelsey Saulnier, Ke Sun, Alex Zhu, Jeffrey Delmerico, Konstantinos Karydis, Nikolay Atanasov, Giuseppe Loianno, Davide Scaramuzza, Kostas Daniilidis, Camillo Jose Taylor, Vijay Kumar

One of the most challenging tasks for a flying robot is to autonomously navigate between target locations quickly and reliably while avoiding obstacles in its path, and with little to no a-priori knowledge of the operating environment. This challenge is addressed in the present paper. We describe the system design and software architecture of our proposed solution, and showcase how all the distinct components can be integrated to enable smooth robot operation. We provide critical insight on hardware and software component selection and development, and present results from extensive experimental testing in real-world warehouse environments. Experimental testing reveals that our proposed solution can deliver fast and robust aerial robot autonomous navigation in cluttered, GPS-denied environments.

* Pre-peer reviewed version of the article accepted in Journal of Field Robotics 

  Click for Model/Code and Paper