Models, code, and papers for "Kenton Lee":

Higher-order Coreference Resolution with Coarse-to-fine Inference

Apr 15, 2018
Kenton Lee, Luheng He, Luke Zettlemoyer

We introduce a fully differentiable approximation to higher-order inference for coreference resolution. Our approach uses the antecedent distribution from a span-ranking architecture as an attention mechanism to iteratively refine span representations. This enables the model to softly consider multiple hops in the predicted clusters. To alleviate the computational cost of this iterative process, we introduce a coarse-to-fine approach that incorporates a less accurate but more efficient bilinear factor, enabling more aggressive pruning without hurting accuracy. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the English OntoNotes benchmark, while being far more computationally efficient.

* Accepted to NAACL 2018 

  Click for Model/Code and Paper
A BERT Baseline for the Natural Questions

Jan 24, 2019
Chris Alberti, Kenton Lee, Michael Collins

This technical note describes a new baseline for the Natural Questions. Our model is based on BERT and reduces the gap between the model F1 scores reported in the original dataset paper and the human upper bound by 30% and 50% relative for the long and short answer tasks respectively. This baseline has been submitted to the official NQ leaderboard at ai.google.com/research/NaturalQuestions and we plan to opensource the code for it in the near future.


  Click for Model/Code and Paper
Recurrent Additive Networks

Jun 29, 2017
Kenton Lee, Omer Levy, Luke Zettlemoyer

We introduce recurrent additive networks (RANs), a new gated RNN which is distinguished by the use of purely additive latent state updates. At every time step, the new state is computed as a gated component-wise sum of the input and the previous state, without any of the non-linearities commonly used in RNN transition dynamics. We formally show that RAN states are weighted sums of the input vectors, and that the gates only contribute to computing the weights of these sums. Despite this relatively simple functional form, experiments demonstrate that RANs perform on par with LSTMs on benchmark language modeling problems. This result shows that many of the non-linear computations in LSTMs and related networks are not essential, at least for the problems we consider, and suggests that the gates are doing more of the computational work than previously understood.


  Click for Model/Code and Paper
Global Neural CCG Parsing with Optimality Guarantees

Sep 24, 2016
Kenton Lee, Mike Lewis, Luke Zettlemoyer

We introduce the first global recursive neural parsing model with optimality guarantees during decoding. To support global features, we give up dynamic programs and instead search directly in the space of all possible subtrees. Although this space is exponentially large in the sentence length, we show it is possible to learn an efficient A* parser. We augment existing parsing models, which have informative bounds on the outside score, with a global model that has loose bounds but only needs to model non-local phenomena. The global model is trained with a new objective that encourages the parser to explore a tiny fraction of the search space. The approach is applied to CCG parsing, improving state-of-the-art accuracy by 0.4 F1. The parser finds the optimal parse for 99.9% of held-out sentences, exploring on average only 190 subtrees.


  Click for Model/Code and Paper
Giving BERT a Calculator: Finding Operations and Arguments with Reading Comprehension

Sep 12, 2019
Daniel Andor, Luheng He, Kenton Lee, Emily Pitler

Reading comprehension models have been successfully applied to extractive text answers, but it is unclear how best to generalize these models to abstractive numerical answers. We enable a BERT-based reading comprehension model to perform lightweight numerical reasoning. We augment the model with a predefined set of executable 'programs' which encompass simple arithmetic as well as extraction. Rather than having to learn to manipulate numbers directly, the model can pick a program and execute it. On the recent Discrete Reasoning Over Passages (DROP) dataset, designed to challenge reading comprehension models, we show a 33% absolute improvement by adding shallow programs. The model can learn to predict new operations when appropriate in a math word problem setting (Roy and Roth, 2015) with very few training examples.


  Click for Model/Code and Paper
Latent Retrieval for Weakly Supervised Open Domain Question Answering

Jun 06, 2019
Kenton Lee, Ming-Wei Chang, Kristina Toutanova

Recent work on open domain question answering (QA) assumes strong supervision of the supporting evidence and/or assumes a blackbox information retrieval (IR) system to retrieve evidence candidates. We argue that both are suboptimal, since gold evidence is not always available, and QA is fundamentally different from IR. We show for the first time that it is possible to jointly learn the retriever and reader from question-answer string pairs and without any IR system. In this setting, evidence retrieval from all of Wikipedia is treated as a latent variable. Since this is impractical to learn from scratch, we pre-train the retriever with an Inverse Cloze Task. We evaluate on open versions of five QA datasets. On datasets where the questioner already knows the answer, a traditional IR system such as BM25 is sufficient. On datasets where a user is genuinely seeking an answer, we show that learned retrieval is crucial, outperforming BM25 by up to 19 points in exact match.

* Accepted to ACL 2019 

  Click for Model/Code and Paper
Jointly Predicting Predicates and Arguments in Neural Semantic Role Labeling

Aug 13, 2018
Luheng He, Kenton Lee, Omer Levy, Luke Zettlemoyer

Recent BIO-tagging-based neural semantic role labeling models are very high performing, but assume gold predicates as part of the input and cannot incorporate span-level features. We propose an end-to-end approach for jointly predicting all predicates, arguments spans, and the relations between them. The model makes independent decisions about what relationship, if any, holds between every possible word-span pair, and learns contextualized span representations that provide rich, shared input features for each decision. Experiments demonstrate that this approach sets a new state of the art on PropBank SRL without gold predicates.

* 5 pages, ACL 2018 

  Click for Model/Code and Paper
End-to-end Neural Coreference Resolution

Dec 15, 2017
Kenton Lee, Luheng He, Mike Lewis, Luke Zettlemoyer

We introduce the first end-to-end coreference resolution model and show that it significantly outperforms all previous work without using a syntactic parser or hand-engineered mention detector. The key idea is to directly consider all spans in a document as potential mentions and learn distributions over possible antecedents for each. The model computes span embeddings that combine context-dependent boundary representations with a head-finding attention mechanism. It is trained to maximize the marginal likelihood of gold antecedent spans from coreference clusters and is factored to enable aggressive pruning of potential mentions. Experiments demonstrate state-of-the-art performance, with a gain of 1.5 F1 on the OntoNotes benchmark and by 3.1 F1 using a 5-model ensemble, despite the fact that this is the first approach to be successfully trained with no external resources.

* Accepted to EMNLP 2017 

  Click for Model/Code and Paper
Long Short-Term Memory as a Dynamically Computed Element-wise Weighted Sum

May 09, 2018
Omer Levy, Kenton Lee, Nicholas FitzGerald, Luke Zettlemoyer

LSTMs were introduced to combat vanishing gradients in simple RNNs by augmenting them with gated additive recurrent connections. We present an alternative view to explain the success of LSTMs: the gates themselves are versatile recurrent models that provide more representational power than previously appreciated. We do this by decoupling the LSTM's gates from the embedded simple RNN, producing a new class of RNNs where the recurrence computes an element-wise weighted sum of context-independent functions of the input. Ablations on a range of problems demonstrate that the gating mechanism alone performs as well as an LSTM in most settings, strongly suggesting that the gates are doing much more in practice than just alleviating vanishing gradients.

* ACL 2018 

  Click for Model/Code and Paper
Well-Read Students Learn Better: On the Importance of Pre-training Compact Models

Sep 25, 2019
Iulia Turc, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

Recent developments in natural language representations have been accompanied by large and expensive models that leverage vast amounts of general-domain text through self-supervised pre-training. Due to the cost of applying such models to down-stream tasks, several model compression techniques on pre-trained language representations have been proposed (Sun et al., 2019; Sanh, 2019). However, surprisingly, the simple baseline of just pre-training and fine-tuning compact models has been overlooked. In this paper, we first show that pre-training remains important in the context of smaller architectures, and fine-tuning pre-trained compact models can be competitive to more elaborate methods proposed in concurrent work. Starting with pre-trained compact models, we then explore transferring task knowledge from large fine-tuned models through standard knowledge distillation. The resulting simple, yet effective and general algorithm, Pre-trained Distillation, brings further improvements. Through extensive experiments, we more generally explore the interaction between pre-training and distillation under two variables that have been under-studied: model size and properties of unlabeled task data. One surprising observation is that they have a compound effect even when sequentially applied on the same data. To accelerate future research, we will make our 24 pre-trained miniature BERT models publicly available.

* Added comparison to concurrent work 

  Click for Model/Code and Paper
Well-Read Students Learn Better: The Impact of Student Initialization on Knowledge Distillation

Aug 23, 2019
Iulia Turc, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

Recent developments in NLP have been accompanied by large, expensive models. Knowledge distillation is the standard method to realize these gains in applications with limited resources: a compact student is trained to recover the outputs of a powerful teacher. While most prior work investigates student architectures and transfer techniques, we focus on an often-neglected aspect---student initialization. We argue that a random starting point hinders students from fully leveraging the teacher expertise, even in the presence of a large transfer set. We observe that applying language model pre-training to students unlocks their generalization potential, surprisingly even for very compact networks. We conduct experiments on 4 NLP tasks and 24 sizes of Transformer-based students; for sentiment classification on the Amazon Book Reviews dataset, pre-training boosts size reduction and TPU speed-up from 3.1x/1.25x to 31x/16x. Extensive ablation studies dissect the interaction between pre-training and distillation, revealing a compound effect even when they are applied on the same unlabeled dataset.


  Click for Model/Code and Paper
Language Model Pre-training for Hierarchical Document Representations

Jan 26, 2019
Ming-Wei Chang, Kristina Toutanova, Kenton Lee, Jacob Devlin

Hierarchical neural architectures are often used to capture long-distance dependencies and have been applied to many document-level tasks such as summarization, document segmentation, and sentiment analysis. However, effective usage of such a large context can be difficult to learn, especially in the case where there is limited labeled data available. Building on the recent success of language model pretraining methods for learning flat representations of text, we propose algorithms for pre-training hierarchical document representations from unlabeled data. Unlike prior work, which has focused on pre-training contextual token representations or context-independent {sentence/paragraph} representations, our hierarchical document representations include fixed-length sentence/paragraph representations which integrate contextual information from the entire documents. Experiments on document segmentation, document-level question answering, and extractive document summarization demonstrate the effectiveness of the proposed pre-training algorithms.


  Click for Model/Code and Paper
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Oct 11, 2018
Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.

* 13 pages 

  Click for Model/Code and Paper
Zero-Shot Entity Linking by Reading Entity Descriptions

Jun 18, 2019
Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, Jacob Devlin, Honglak Lee

We present the zero-shot entity linking task, where mentions must be linked to unseen entities without in-domain labeled data. The goal is to enable robust transfer to highly specialized domains, and so no metadata or alias tables are assumed. In this setting, entities are only identified by text descriptions, and models must rely strictly on language understanding to resolve the new entities. First, we show that strong reading comprehension models pre-trained on large unlabeled data can be used to generalize to unseen entities. Second, we propose a simple and effective adaptive pre-training strategy, which we term domain-adaptive pre-training (DAP), to address the domain shift problem associated with linking unseen entities in a new domain. We present experiments on a new dataset that we construct for this task and show that DAP improves over strong pre-training baselines, including BERT. The data and code are available at https://github.com/lajanugen/zeshel.

* ACL 2019 

  Click for Model/Code and Paper
Syntactic Scaffolds for Semantic Structures

Aug 30, 2018
Swabha Swayamdipta, Sam Thomson, Kenton Lee, Luke Zettlemoyer, Chris Dyer, Noah A. Smith

We introduce the syntactic scaffold, an approach to incorporating syntactic information into semantic tasks. Syntactic scaffolds avoid expensive syntactic processing at runtime, only making use of a treebank during training, through a multitask objective. We improve over strong baselines on PropBank semantics, frame semantics, and coreference resolution, achieving competitive performance on all three tasks.

* Accepted at EMNLP 2018 

  Click for Model/Code and Paper
Learning Recurrent Span Representations for Extractive Question Answering

Mar 17, 2017
Kenton Lee, Shimi Salant, Tom Kwiatkowski, Ankur Parikh, Dipanjan Das, Jonathan Berant

The reading comprehension task, that asks questions about a given evidence document, is a central problem in natural language understanding. Recent formulations of this task have typically focused on answer selection from a set of candidates pre-defined manually or through the use of an external NLP pipeline. However, Rajpurkar et al. (2016) recently released the SQuAD dataset in which the answers can be arbitrary strings from the supplied text. In this paper, we focus on this answer extraction task, presenting a novel model architecture that efficiently builds fixed length representations of all spans in the evidence document with a recurrent network. We show that scoring explicit span representations significantly improves performance over other approaches that factor the prediction into separate predictions about words or start and end markers. Our approach improves upon the best published results of Wang & Jiang (2016) by 5% and decreases the error of Rajpurkar et al.'s baseline by > 50%.


  Click for Model/Code and Paper
BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions

May 24, 2019
Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, Kristina Toutanova

In this paper we study yes/no questions that are naturally occurring --- meaning that they are generated in unprompted and unconstrained settings. We build a reading comprehension dataset, BoolQ, of such questions, and show that they are unexpectedly challenging. They often query for complex, non-factoid information, and require difficult entailment-like inference to solve. We also explore the effectiveness of a range of transfer learning baselines. We find that transferring from entailment data is more effective than transferring from paraphrase or extractive QA data, and that it, surprisingly, continues to be very beneficial even when starting from massive pre-trained language models such as BERT. Our best method trains BERT on MultiNLI and then re-trains it on our train set. It achieves 80.4% accuracy compared to 90% accuracy of human annotators (and 62% majority-baseline), leaving a significant gap for future work.

* In NAACL 2019 

  Click for Model/Code and Paper
Improving Span-based Question Answering Systems with Coarsely Labeled Data

Nov 05, 2018
Hao Cheng, Ming-Wei Chang, Kenton Lee, Ankur Parikh, Michael Collins, Kristina Toutanova

We study approaches to improve fine-grained short answer Question Answering models by integrating coarse-grained data annotated for paragraph-level relevance and show that coarsely annotated data can bring significant performance gains. Experiments demonstrate that the standard multi-task learning approach of sharing representations is not the most effective way to leverage coarse-grained annotations. Instead, we can explicitly model the latent fine-grained short answer variables and optimize the marginal log-likelihood directly or use a newly proposed \emph{posterior distillation} learning objective. Since these latent-variable methods have explicit access to the relationship between the fine and coarse tasks, they result in significantly larger improvements from coarse supervision.


  Click for Model/Code and Paper