Models, code, and papers for "Kevin Yu":

The Sixth Sense with Artificial Intelligence: An Innovative Solution for Real-Time Retrieval of the Human Figure Behind Visual Obstruction

Mar 15, 2019
Kevin Meng, Yu Meng

Overcoming the visual barrier and developing "see-through vision" has been one of mankind's long-standing dreams. However, visible light cannot travel through opaque obstructions (e.g. walls). Unlike visible light, though, Radio Frequency (RF) signals penetrate many common building objects and reflect highly off humans. This project creates a breakthrough artificial intelligence methodology by which the skeletal structure of a human can be reconstructed with RF even through visual occlusion. In a novel procedural flow, video and RF data are first collected simultaneously using a co-located setup containing an RGB camera and RF antenna array transceiver. Next, the RGB video is processed with a Part Affinity Field computer-vision model to generate ground truth label locations for each keypoint in the human skeleton. Then, a collective deep-learning model consisting of a Residual Convolutional Neural Network, Region Proposal Network, and Recurrent Neural Network 1) extracts spatial features from RF images, 2) detects and crops out all people present in the scene, and 3) aggregates information over dozens of time-steps to piece together the various limbs that reflect signals back to the receiver at different times. A simulator is created to demonstrate the system. This project has impactful applications in medicine, military, search & rescue, and robotics. Especially during a fire emergency, neither visible light nor infrared thermal imaging can penetrate smoke or fire, but RF can. With over 1 million fires reported in the US per year, this technology could save thousands of lives and tens-of-thousands of injuries.

  Click for Model/Code and Paper
Algorithms for Routing of Unmanned Aerial Vehicles with Mobile Recharging Stations

Sep 18, 2017
Kevin Yu, Ashish Kumar Budhiraja, Pratap Tokekar

We study the problem of planning a tour for an energy-limited Unmanned Aerial Vehicle (UAV) to visit a set of sites in the least amount of time. We envision scenarios where the UAV can be recharged along the way either by landing on stationary recharging stations or on Unmanned Ground Vehicles (UGVs) acting as mobile recharging stations. This leads to a new variant of the Traveling Salesperson Problem (TSP) with mobile recharging stations. We present an algorithm that finds not only the order in which to visit the sites but also when and where to land on the charging stations to recharge. Our algorithm plans tours for the UGVs as well as determines best locations to place stationary charging stations. While the problems we study are NP-Hard, we present a practical solution using Generalized TSP that finds the optimal solution. If the UGVs are slower, the algorithm also finds the minimum number of UGVs required to support the UAV mission such that the UAV is not required to wait for the UGV. Our simulation results show that the running time is acceptable for reasonably sized instances in practice.

* 7 pages, 14 figures, ICRA2018 under review 

  Click for Model/Code and Paper
Generating Diverse Story Continuations with Controllable Semantics

Sep 30, 2019
Lifu Tu, Xiaoan Ding, Dong Yu, Kevin Gimpel

We propose a simple and effective modeling framework for controlled generation of multiple, diverse outputs. We focus on the setting of generating the next sentence of a story given its context. As controllable dimensions, we consider several sentence attributes, including sentiment, length, predicates, frames, and automatically-induced clusters. Our empirical results demonstrate: (1) our framework is accurate in terms of generating outputs that match the target control values; (2) our model yields increased maximum metric scores compared to standard n-best list generation via beam search; (3) controlling generation with semantic frames leads to a stronger combination of diversity and quality than other control variables as measured by automatic metrics. We also conduct a human evaluation to assess the utility of providing multiple suggestions for creative writing, demonstrating promising results for the potential of controllable, diverse generation in a collaborative writing system.

* EMNLP 2019 Workshop on Neural Generation and Translation (WNGT2019), and non-archival acceptance in NeuralGen 2019 

  Click for Model/Code and Paper
X-ray Scattering Image Classification Using Deep Learning

Nov 10, 2016
Boyu Wang, Kevin Yager, Dantong Yu, Minh Hoai

Visual inspection of x-ray scattering images is a powerful technique for probing the physical structure of materials at the molecular scale. In this paper, we explore the use of deep learning to develop methods for automatically analyzing x-ray scattering images. In particular, we apply Convolutional Neural Networks and Convolutional Autoencoders for x-ray scattering image classification. To acquire enough training data for deep learning, we use simulation software to generate synthetic x-ray scattering images. Experiments show that deep learning methods outperform previously published methods by 10\% on synthetic and real datasets.

  Click for Model/Code and Paper
Deep Nearest Class Mean Model for Incremental Odor Classification

Jan 08, 2018
Yu Cheng, Angus Wong, Kevin Hung, Zhizhong Li, Weitong Li

In recent years, more and more machine learning algorithms have been applied to odor recognition. These odor recognition algorithms usually assume that the training dataset is static. However, for some odor recognition tasks, the odor dataset is dynamically growing where not only the training samples but also the number of classes increase over time. Motivated by this concern, we proposed a deep nearest class mean (DNCM) model which combines the deep learning framework and nearest class mean (NCM) method. DNCM not only can leverage deep neural network to extract deep features, but also well suited for integrating new classes. Experiments demonstrate that the proposed DNCM model is effective and efficient for incremental odor classification, especially for new classes with only a small number of training examples.

* 15 pages, 6 figures 

  Click for Model/Code and Paper
Collaboration Analysis Using Deep Learning

Apr 17, 2019
Zhang Guo, Kevin Yu, Rebecca Pearlman, Nassir Navab, Roghayeh Barmaki

The analysis of the collaborative learning process is one of the growing fields of education research, which has many different analytic solutions. In this paper, we provided a new solution to improve automated collaborative learning analyses using deep neural networks. Instead of using self-reported questionnaires, which are subject to bias and noise, we automatically extract group-working information by object recognition results using Mask R-CNN method. This process is based on detecting the people and other objects from pictures and video clips of the collaborative learning process, then evaluate the mobile learning performance using the collaborative indicators. We tested our approach to automatically evaluate the group-work collaboration in a controlled study of thirty-three dyads while performing an anatomy body painting intervention. The results indicate that our approach recognizes the differences of collaborations among teams of treatment and control groups in the case study. This work introduces new methods for automated quality prediction of collaborations among human-human interactions using computer vision techniques.

* 6 pages, 4 Figures and a Table 

  Click for Model/Code and Paper
Double Anchor R-CNN for Human Detection in a Crowd

Sep 22, 2019
Kevin Zhang, Feng Xiong, Peize Sun, Li Hu, Boxun Li, Gang Yu

Detecting human in a crowd is a challenging problem due to the uncertainties of occlusion patterns. In this paper, we propose to handle the crowd occlusion problem in human detection by leveraging the head part. Double Anchor RPN is developed to capture body and head parts in pairs. A proposal crossover strategy is introduced to generate high-quality proposals for both parts as a training augmentation. Features of coupled proposals are then aggregated efficiently to exploit the inherent relationship. Finally, a Joint NMS module is developed for robust post-processing. The proposed framework, called Double Anchor R-CNN, is able to detect the body and head for each person simultaneously in crowded scenarios. State-of-the-art results are reported on challenging human detection datasets. Our model yields log-average miss rates (MR) of 51.79pp on CrowdHuman, 55.01pp on COCOPersons~(crowded sub-dataset) and 40.02pp on CrowdPose~(crowded sub-dataset), which outperforms previous baseline detectors by 3.57pp, 3.82pp, and 4.24pp, respectively. We hope our simple and effective approach will serve as a solid baseline and help ease future research in crowded human detection.

  Click for Model/Code and Paper
View Planning and Navigation Algorithms for Autonomous Bridge Inspection with UAVs

Oct 03, 2019
Kevin Yu, Prajwal Shanthakumar, Jonah Orevillo, Eric Bianchi, Matthew Hebdon, Pratap Tokekar

We study the problem of infrastructure inspection using an Unmanned Aerial Vehicle (UAV) in box girder bridge environments. We consider a scenario where the UAV needs to fully inspect box girder bridges and localize along the bridge surface when standard methods like GPS and optical flow are denied. Our method for overcoming the difficulties of box girder bridges consist of creating local navigation routines, a supervisor, and a planner. The local navigation routines use two 2D Lidars for girder and column flight. For switching between local navigation routines we implement a supervisor which dictates when the UAV is able to switch between local navigation routines. Lastly, we implement a planner to calculate the path along that box girder bridge that will minimize the flight time of the UAV. With local navigation routines, a supervisor, and a planner we construct a system that can fully and autonomously inspect box girder bridges when standard methods are unavailable.

* 9 pages, 14 figures 

  Click for Model/Code and Paper
POP-CNN: Predicting Odor's Pleasantness with Convolutional Neural Network

Mar 19, 2019
Danli Wu, Yu Cheng, Dehan Luo, Kin-Yeung Wong, Kevin Hung, Zhijing Yang

Predicting odor's pleasantness simplifies the evaluation of odors and has the potential to be applied in perfumes and environmental monitoring industry. Classical algorithms for predicting odor's pleasantness generally use a manual feature extractor and an independent classifier. Manual designing a good feature extractor depend on expert knowledge and experience is the key to the accuracy of the algorithms. In order to circumvent this difficulty, we proposed a model for predicting odor's pleasantness by using convolutional neural network. In our model, the convolutional neural layers replace manual feature extractor and show better performance. The experiments show that the correlation between our model and human is over 90% on pleasantness rating. And our model has 99.9% accuracy in distinguishing between absolutely pleasant or unpleasant odors.

  Click for Model/Code and Paper
Improved visible to IR image transformation using synthetic data augmentation with cycle-consistent adversarial networks

Apr 25, 2019
Kyongsik Yun, Kevin Yu, Joseph Osborne, Sarah Eldin, Luan Nguyen, Alexander Huyen, Thomas Lu

Infrared (IR) images are essential to improve the visibility of dark or camouflaged objects. Object recognition and segmentation based on a neural network using IR images provide more accuracy and insight than color visible images. But the bottleneck is the amount of relevant IR images for training. It is difficult to collect real-world IR images for special purposes, including space exploration, military and fire-fighting applications. To solve this problem, we created color visible and IR images using a Unity-based 3D game editor. These synthetically generated color visible and IR images were used to train cycle consistent adversarial networks (CycleGAN) to convert visible images to IR images. CycleGAN has the advantage that it does not require precisely matching visible and IR pairs for transformation training. In this study, we discovered that additional synthetic data can help improve CycleGAN performance. Neural network training using real data (N = 20) performed more accurate transformations than training using real (N = 10) and synthetic (N = 10) data combinations. The result indicates that the synthetic data cannot exceed the quality of the real data. Neural network training using real (N = 10) and synthetic (N = 100) data combinations showed almost the same performance as training using real data (N = 20). At least 10 times more synthetic data than real data is required to achieve the same performance. In summary, CycleGAN is used with synthetic data to improve the IR image conversion performance of visible images.

* 8 pages, 6 figures, SPIE 

  Click for Model/Code and Paper
Attention-based Extraction of Structured Information from Street View Imagery

Aug 20, 2017
Zbigniew Wojna, Alex Gorban, Dar-Shyang Lee, Kevin Murphy, Qian Yu, Yeqing Li, Julian Ibarz

We present a neural network model - based on CNNs, RNNs and a novel attention mechanism - which achieves 84.2% accuracy on the challenging French Street Name Signs (FSNS) dataset, significantly outperforming the previous state of the art (Smith'16), which achieved 72.46%. Furthermore, our new method is much simpler and more general than the previous approach. To demonstrate the generality of our model, we show that it also performs well on an even more challenging dataset derived from Google Street View, in which the goal is to extract business names from store fronts. Finally, we study the speed/accuracy tradeoff that results from using CNN feature extractors of different depths. Surprisingly, we find that deeper is not always better (in terms of accuracy, as well as speed). Our resulting model is simple, accurate and fast, allowing it to be used at scale on a variety of challenging real-world text extraction problems.

* Updated references, added link to the source code 

  Click for Model/Code and Paper
Partial Convolution based Padding

Nov 28, 2018
Guilin Liu, Kevin J. Shih, Ting-Chun Wang, Fitsum A. Reda, Karan Sapra, Zhiding Yu, Andrew Tao, Bryan Catanzaro

In this paper, we present a simple yet effective padding scheme that can be used as a drop-in module for existing convolutional neural networks. We call it partial convolution based padding, with the intuition that the padded region can be treated as holes and the original input as non-holes. Specifically, during the convolution operation, the convolution results are re-weighted near image borders based on the ratios between the padded area and the convolution sliding window area. Extensive experiments with various deep network models on ImageNet classification and semantic segmentation demonstrate that the proposed padding scheme consistently outperforms standard zero padding with better accuracy.

* 11 pages; code is available at 

  Click for Model/Code and Paper
On-the-fly Augmented Reality for Orthopaedic Surgery Using a Multi-Modal Fiducial

Jan 04, 2018
Sebastian Andress, Alex Johnson, Mathias Unberath, Alexander Winkler, Kevin Yu, Javad Fotouhi, Simon Weidert, Greg Osgood, Nassir Navab

Fluoroscopic X-ray guidance is a cornerstone for percutaneous orthopaedic surgical procedures. However, two-dimensional observations of the three-dimensional anatomy suffer from the effects of projective simplification. Consequently, many X-ray images from various orientations need to be acquired for the surgeon to accurately assess the spatial relations between the patient's anatomy and the surgical tools. In this paper, we present an on-the-fly surgical support system that provides guidance using augmented reality and can be used in quasi-unprepared operating rooms. The proposed system builds upon a multi-modality marker and simultaneous localization and mapping technique to co-calibrate an optical see-through head mounted display to a C-arm fluoroscopy system. Then, annotations on the 2D X-ray images can be rendered as virtual objects in 3D providing surgical guidance. We quantitatively evaluate the components of the proposed system, and finally, design a feasibility study on a semi-anthropomorphic phantom. The accuracy of our system was comparable to the traditional image-guided technique while substantially reducing the number of acquired X-ray images as well as procedure time. Our promising results encourage further research on the interaction between virtual and real objects, that we believe will directly benefit the proposed method. Further, we would like to explore the capabilities of our on-the-fly augmented reality support system in a larger study directed towards common orthopaedic interventions.

* J. Med. Imag. 5(2), 2018 
* S. Andress, A. Johnson, M. Unberath, and A. Winkler have contributed equally and are listed in alphabetical order 

  Click for Model/Code and Paper
The State and Future of Genetic Improvement

Jun 27, 2019
William B. Langdon, Westley Weimer, Christopher Timperley, Oliver Krauss, Zhen Yu Ding, Yiwei Lyu, Nicolas Chausseau, Eric Schulte, Shin Hwei Tan, Kevin Leach, Yu Huang, Gabin An

We report the discussion session at the sixth international Genetic Improvement workshop, GI-2019 @ ICSE, which was held as part of the 41st ACM/IEEE International Conference on Software Engineering on Tuesday 28th May 2019. Topics included GI representations, the maintainability of evolved code, automated software testing, future areas of GI research, such as co-evolution, and existing GI tools and benchmarks.

* University College London, Computer Science 

  Click for Model/Code and Paper
Gunrock: A Social Bot for Complex and Engaging Long Conversations

Oct 07, 2019
Dian Yu, Michelle Cohn, Yi Mang Yang, Chun-Yen Chen, Weiming Wen, Jiaping Zhang, Mingyang Zhou, Kevin Jesse, Austin Chau, Antara Bhowmick, Shreenath Iyer, Giritheja Sreenivasulu, Sam Davidson, Ashwin Bhandare, Zhou Yu

Gunrock is the winner of the 2018 Amazon Alexa Prize, as evaluated by coherence and engagement from both real users and Amazon-selected expert conversationalists. We focus on understanding complex sentences and having in-depth conversations in open domains. In this paper, we introduce some innovative system designs and related validation analysis. Overall, we found that users produce longer sentences to Gunrock, which are directly related to users' engagement (e.g., ratings, number of turns). Additionally, users' backstory queries about Gunrock are positively correlated to user satisfaction. Finally, we found dialog flows that interleave facts and personal opinions and stories lead to better user satisfaction.

* EMNLP 2019 

  Click for Model/Code and Paper
Active Learning in Recommendation Systems with Multi-level User Preferences

Nov 30, 2018
Yuheng Bu, Kevin Small

While recommendation systems generally observe user behavior passively, there has been an increased interest in directly querying users to learn their specific preferences. In such settings, considering queries at different levels of granularity to optimize user information acquisition is crucial to efficiently providing a good user experience. In this work, we study the active learning problem with multi-level user preferences within the collective matrix factorization (CMF) framework. CMF jointly captures multi-level user preferences with respect to items and relations between items (e.g., book genre, cuisine type), generally resulting in improved predictions. Motivated by finite-sample analysis of the CMF model, we propose a theoretically optimal active learning strategy based on the Fisher information matrix and use this to derive a realizable approximation algorithm for practical recommendations. Experiments are conducted using both the Yelp dataset directly and an illustrative synthetic dataset in the three settings of personalized active learning, cold-start recommendations, and noisy data -- demonstrating strong improvements over several widely used active learning methods.

  Click for Model/Code and Paper
Learning Criteria and Evaluation Metrics for Textual Transfer between Non-Parallel Corpora

Oct 28, 2018
Yuanzhe Pang, Kevin Gimpel

We consider the problem of automatically generating textual paraphrases with modified attributes or stylistic properties, focusing on the setting without parallel data (Hu et al., 2017; Shen et al., 2017). This setting poses challenges for learning and evaluation. We show that the metric of post-transfer classification accuracy is insufficient on its own, and propose additional metrics based on semantic content preservation and fluency. For reliable evaluation, all three metric categories must be taken into account. We contribute new loss functions and training strategies to address the new metrics. Semantic preservation is addressed by adding a cyclic consistency loss and a loss based on paraphrase pairs, while fluency is improved by integrating losses based on style-specific language models. Automatic and manual evaluation show large improvements over the baseline method of Shen et al. (2017). Our hope is that these losses and metrics can be general and useful tools for a range of textual transfer settings without parallel corpora.

  Click for Model/Code and Paper
Machine Transliteration

Apr 14, 1997
Kevin Knight, Jonathan Graehl

It is challenging to translate names and technical terms across languages with different alphabets and sound inventories. These items are commonly transliterated, i.e., replaced with approximate phonetic equivalents. For example, "computer" in English comes out as "konpyuutaa" in Japanese. Translating such items from Japanese back to English is even more challenging, and of practical interest, as transliterated items make up the bulk of text phrases not found in bilingual dictionaries. We describe and evaluate a method for performing backwards transliterations by machine. This method uses a generative model, incorporating several distinct stages in the transliteration process.

* 8 pages, postscript, to appear, ACL-97/EACL-97 

  Click for Model/Code and Paper
Generative Moment Matching Networks

Feb 10, 2015
Yujia Li, Kevin Swersky, Richard Zemel

We consider the problem of learning deep generative models from data. We formulate a method that generates an independent sample via a single feedforward pass through a multilayer perceptron, as in the recently proposed generative adversarial networks (Goodfellow et al., 2014). Training a generative adversarial network, however, requires careful optimization of a difficult minimax program. Instead, we utilize a technique from statistical hypothesis testing known as maximum mean discrepancy (MMD), which leads to a simple objective that can be interpreted as matching all orders of statistics between a dataset and samples from the model, and can be trained by backpropagation. We further boost the performance of this approach by combining our generative network with an auto-encoder network, using MMD to learn to generate codes that can then be decoded to produce samples. We show that the combination of these techniques yields excellent generative models compared to baseline approaches as measured on MNIST and the Toronto Face Database.

  Click for Model/Code and Paper
Learning unbiased features

Dec 17, 2014
Yujia Li, Kevin Swersky, Richard Zemel

A key element in transfer learning is representation learning; if representations can be developed that expose the relevant factors underlying the data, then new tasks and domains can be learned readily based on mappings of these salient factors. We propose that an important aim for these representations are to be unbiased. Different forms of representation learning can be derived from alternative definitions of unwanted bias, e.g., bias to particular tasks, domains, or irrelevant underlying data dimensions. One very useful approach to estimating the amount of bias in a representation comes from maximum mean discrepancy (MMD) [5], a measure of distance between probability distributions. We are not the first to suggest that MMD can be a useful criterion in developing representations that apply across multiple domains or tasks [1]. However, in this paper we describe a number of novel applications of this criterion that we have devised, all based on the idea of developing unbiased representations. These formulations include: a standard domain adaptation framework; a method of learning invariant representations; an approach based on noise-insensitive autoencoders; and a novel form of generative model.

* Published in NIPS 2014 Workshop on Transfer and Multitask Learning, see 

  Click for Model/Code and Paper