Research papers and code for "Kristina Toutanova":
Hierarchical neural architectures are often used to capture long-distance dependencies and have been applied to many document-level tasks such as summarization, document segmentation, and sentiment analysis. However, effective usage of such a large context can be difficult to learn, especially in the case where there is limited labeled data available. Building on the recent success of language model pretraining methods for learning flat representations of text, we propose algorithms for pre-training hierarchical document representations from unlabeled data. Unlike prior work, which has focused on pre-training contextual token representations or context-independent {sentence/paragraph} representations, our hierarchical document representations include fixed-length sentence/paragraph representations which integrate contextual information from the entire documents. Experiments on document segmentation, document-level question answering, and extractive document summarization demonstrate the effectiveness of the proposed pre-training algorithms.

Click to Read Paper and Get Code
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.

* 13 pages
Click to Read Paper and Get Code
Past work in relation extraction has focused on binary relations in single sentences. Recent NLP inroads in high-value domains have sparked interest in the more general setting of extracting n-ary relations that span multiple sentences. In this paper, we explore a general relation extraction framework based on graph long short-term memory networks (graph LSTMs) that can be easily extended to cross-sentence n-ary relation extraction. The graph formulation provides a unified way of exploring different LSTM approaches and incorporating various intra-sentential and inter-sentential dependencies, such as sequential, syntactic, and discourse relations. A robust contextual representation is learned for the entities, which serves as input to the relation classifier. This simplifies handling of relations with arbitrary arity, and enables multi-task learning with related relations. We evaluate this framework in two important precision medicine settings, demonstrating its effectiveness with both conventional supervised learning and distant supervision. Cross-sentence extraction produced larger knowledge bases. and multi-task learning significantly improved extraction accuracy. A thorough analysis of various LSTM approaches yielded useful insight the impact of linguistic analysis on extraction accuracy.

* Transactions of the Association for Computational Linguistics (TACL) 2017, Vol 5
* Conditional accepted by TACL in December 2016; published in April 2017; presented at ACL in August 2017
Click to Read Paper and Get Code
Grammatical error correction (GEC) systems strive to correct both global errors in word order and usage, and local errors in spelling and inflection. Further developing upon recent work on neural machine translation, we propose a new hybrid neural model with nested attention layers for GEC. Experiments show that the new model can effectively correct errors of both types by incorporating word and character-level information,and that the model significantly outperforms previous neural models for GEC as measured on the standard CoNLL-14 benchmark dataset. Further analysis also shows that the superiority of the proposed model can be largely attributed to the use of the nested attention mechanism, which has proven particularly effective in correcting local errors that involve small edits in orthography.

Click to Read Paper and Get Code
We study approaches to improve fine-grained short answer Question Answering models by integrating coarse-grained data annotated for paragraph-level relevance and show that coarsely annotated data can bring significant performance gains. Experiments demonstrate that the standard multi-task learning approach of sharing representations is not the most effective way to leverage coarse-grained annotations. Instead, we can explicitly model the latent fine-grained short answer variables and optimize the marginal log-likelihood directly or use a newly proposed \emph{posterior distillation} learning objective. Since these latent-variable methods have explicit access to the relationship between the fine and coarse tasks, they result in significantly larger improvements from coarse supervision.

Click to Read Paper and Get Code