Models, code, and papers for "Kyunghyun Paeng":

A Robust and Effective Approach Towards Accurate Metastasis Detection and pN-stage Classification in Breast Cancer

May 30, 2018
Byungjae Lee, Kyunghyun Paeng

Predicting TNM stage is the major determinant of breast cancer prognosis and treatment. The essential part of TNM stage classification is whether the cancer has metastasized to the regional lymph nodes (N-stage). Pathologic N-stage (pN-stage) is commonly performed by pathologists detecting metastasis in histological slides. However, this diagnostic procedure is prone to misinterpretation and would normally require extensive time by pathologists because of the sheer volume of data that needs a thorough review. Automated detection of lymph node metastasis and pN-stage prediction has a great potential to reduce their workload and help the pathologist. Recent advances in convolutional neural networks (CNN) have shown significant improvements in histological slide analysis, but accuracy is not optimized because of the difficulty in the handling of gigapixel images. In this paper, we propose a robust method for metastasis detection and pN-stage classification in breast cancer from multiple gigapixel pathology images in an effective way. pN-stage is predicted by combining patch-level CNN based metastasis detector and slide-level lymph node classifier. The proposed framework achieves a state-of-the-art quadratic weighted kappa score of 0.9203 on the Camelyon17 dataset, outperforming the previous winning method of the Camelyon17 challenge.

* Accepted at MICCAI 2018 

  Click for Model/Code and Paper
PseudoEdgeNet: Nuclei Segmentation only with Point Annotations

Jul 22, 2019
Inwan Yoo, Donggeun Yoo, Kyunghyun Paeng

Nuclei segmentation is one of the important tasks for whole slide image analysis in digital pathology. With the drastic advance of deep learning, recent deep networks have demonstrated successful performance of the nuclei segmentation task. However, a major bottleneck to achieving good performance is the cost for annotation. A large network requires a large number of segmentation masks, and this annotation task is given to pathologists, not the public. In this paper, we propose a weakly supervised nuclei segmentation method, which requires only point annotations for training. This method can scale to large training set as marking a point of a nucleus is much cheaper than the fine segmentation mask. To this end, we introduce a novel auxiliary network, called PseudoEdgeNet, which guides the segmentation network to recognize nuclei edges even without edge annotations. We evaluate our method with two public datasets, and the results demonstrate that the method consistently outperforms other weakly supervised methods.

* MICCAI 2019 accepted 

  Click for Model/Code and Paper
A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology

Aug 11, 2017
Kyunghyun Paeng, Sangheum Hwang, Sunggyun Park, Minsoo Kim

We present a unified framework to predict tumor proliferation scores from breast histopathology whole slide images. Our system offers a fully automated solution to predicting both a molecular data-based, and a mitosis counting-based tumor proliferation score. The framework integrates three modules, each fine-tuned to maximize the overall performance: An image processing component for handling whole slide images, a deep learning based mitosis detection network, and a proliferation scores prediction module. We have achieved 0.567 quadratic weighted Cohen's kappa in mitosis counting-based score prediction and 0.652 F1-score in mitosis detection. On Spearman's correlation coefficient, which evaluates predictive accuracy on the molecular data based score, the system obtained 0.6171. Our approach won first place in all of the three tasks in Tumor Proliferation Assessment Challenge 2016 which is MICCAI grand challenge.

* Accepted to the 3rd Workshop on Deep Learning in Medical Image Analysis (DLMIA 2017), MICCAI 2017 

  Click for Model/Code and Paper
Action-Driven Object Detection with Top-Down Visual Attentions

Dec 20, 2016
Donggeun Yoo, Sunggyun Park, Kyunghyun Paeng, Joon-Young Lee, In So Kweon

A dominant paradigm for deep learning based object detection relies on a "bottom-up" approach using "passive" scoring of class agnostic proposals. These approaches are efficient but lack of holistic analysis of scene-level context. In this paper, we present an "action-driven" detection mechanism using our "top-down" visual attention model. We localize an object by taking sequential actions that the attention model provides. The attention model conditioned with an image region provides required actions to get closer toward a target object. An action at each time step is weak itself but an ensemble of the sequential actions makes a bounding-box accurately converge to a target object boundary. This attention model we call AttentionNet is composed of a convolutional neural network. During our whole detection procedure, we only utilize the actions from a single AttentionNet without any modules for object proposals nor post bounding-box regression. We evaluate our top-down detection mechanism over the PASCAL VOC series and ILSVRC CLS-LOC dataset, and achieve state-of-the-art performances compared to the major bottom-up detection methods. In particular, our detection mechanism shows a strong advantage in elaborate localization by outperforming Faster R-CNN with a margin of +7.1% over PASCAL VOC 2007 when we increase the IoU threshold for positive detection to 0.7.

  Click for Model/Code and Paper
Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge

Jul 22, 2018
Mitko Veta, Yujing J. Heng, Nikolas Stathonikos, Babak Ehteshami Bejnordi, Francisco Beca, Thomas Wollmann, Karl Rohr, Manan A. Shah, Dayong Wang, Mikael Rousson, Martin Hedlund, David Tellez, Francesco Ciompi, Erwan Zerhouni, David Lanyi, Matheus Viana, Vassili Kovalev, Vitali Liauchuk, Hady Ahmady Phoulady, Talha Qaiser, Simon Graham, Nasir Rajpoot, Erik Sjöblom, Jesper Molin, Kyunghyun Paeng, Sangheum Hwang, Sunggyun Park, Zhipeng Jia, Eric I-Chao Chang, Yan Xu, Andrew H. Beck, Paul J. van Diest, Josien P. W. Pluim

Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on mitosis detection in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should be performed in whole-slide images (WSIs) and an automatic method should be able to produce a tumor proliferation score given a WSI as input. To address this, we organized the TUmor Proliferation Assessment Challenge 2016 (TUPAC16) on prediction of tumor proliferation scores from WSIs. The challenge dataset consisted of 500 training and 321 testing breast cancer histopathology WSIs. In order to ensure fair and independent evaluation, only the ground truth for the training dataset was provided to the challenge participants. The first task of the challenge was to predict mitotic scores, i.e., to reproduce the manual method of assessing tumor proliferation by a pathologist. The second task was to predict the gene expression based PAM50 proliferation scores from the WSI. The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of $\kappa$ = 0.567, 95% CI [0.464, 0.671] between the predicted scores and the ground truth. For the second task, the predictions of the top method had a Spearman's correlation coefficient of r = 0.617, 95% CI [0.581 0.651] with the ground truth. This was the first study that investigated tumor proliferation assessment from WSIs. The achieved results are promising given the difficulty of the tasks and weakly-labelled nature of the ground truth. However, further research is needed to improve the practical utility of image analysis methods for this task.

* Overview paper of the TUPAC16 challenge: 

  Click for Model/Code and Paper