Research papers and code for "L. P. Kaelbling":
Hidden Markov models (HMMs) and partially observable Markov decision processes (POMDPs) provide useful tools for modeling dynamical systems. They are particularly useful for representing the topology of environments such as road networks and office buildings, which are typical for robot navigation and planning. The work presented here describes a formal framework for incorporating readily available odometric information and geometrical constraints into both the models and the algorithm that learns them. By taking advantage of such information, learning HMMs/POMDPs can be made to generate better solutions and require fewer iterations, while being robust in the face of data reduction. Experimental results, obtained from both simulated and real robot data, demonstrate the effectiveness of the approach.

* Journal Of Artificial Intelligence Research, Volume 16, pages 167-207, 2002
Click to Read Paper and Get Code
This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word ``reinforcement.'' The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.

* Journal of Artificial Intelligence Research, Vol 4, (1996), 237-285
* See for any accompanying files
Click to Read Paper and Get Code
In this article, we work towards the goal of developing agents that can learn to act in complex worlds. We develop a probabilistic, relational planning rule representation that compactly models noisy, nondeterministic action effects, and show how such rules can be effectively learned. Through experiments in simple planning domains and a 3D simulated blocks world with realistic physics, we demonstrate that this learning algorithm allows agents to effectively model world dynamics.

* Journal Of Artificial Intelligence Research, Volume 29, pages 309-352, 2007
Click to Read Paper and Get Code
An efficient, generalizable physical simulator with universal uncertainty estimates has wide applications in robot state estimation, planning, and control. In this paper, we build such a simulator for two scenarios, planar pushing and ball bouncing, by augmenting an analytical rigid-body simulator with a neural network that learns to model uncertainty as residuals. Combining symbolic, deterministic simulators with learnable, stochastic neural nets provides us with expressiveness, efficiency, and generalizability simultaneously. Our model outperforms both purely analytical and purely learned simulators consistently on real, standard benchmarks. Compared with methods that model uncertainty using Gaussian processes, our model runs much faster, generalizes better to new object shapes, and is able to characterize the complex distribution of object trajectories.

* IROS 2018
Click to Read Paper and Get Code