Models, code, and papers for "Lu Yuan":

Notes on Low-rank Matrix Factorization

May 06, 2016
Yuan Lu, Jie Yang

Low-rank matrix factorization (MF) is an important technique in data science. The key idea of MF is that there exists latent structures in the data, by uncovering which we could obtain a compressed representation of the data. By factorizing an original matrix to low-rank matrices, MF provides a unified method for dimension reduction, clustering, and matrix completion. In this article we review several important variants of MF, including: Basic MF, Non-negative MF, Orthogonal non-negative MF. As can be told from their names, non-negative MF and orthogonal non-negative MF are variants of basic MF with non-negativity and/or orthogonality constraints. Such constraints are useful in specific senarios. In the first part of this article, we introduce, for each of these models, the application scenarios, the distinctive properties, and the optimizing method. By properly adapting MF, we can go beyond the problem of clustering and matrix completion. In the second part of this article, we will extend MF to sparse matrix compeletion, enhance matrix compeletion using various regularization methods, and make use of MF for (semi-)supervised learning by introducing latent space reinforcement and transformation. We will see that MF is not only a useful model but also as a flexible framework that is applicable for various prediction problems.

  Click for Model/Code and Paper
Forward Vehicle Collision Warning Based on Quick Camera Calibration

Apr 22, 2019
Yuwei Lu, Yuan Yuan, Qi Wang

Forward Vehicle Collision Warning (FCW) is one of the most important functions for autonomous vehicles. In this procedure, vehicle detection and distance measurement are core components, requiring accurate localization and estimation. In this paper, we propose a simple but efficient forward vehicle collision warning framework by aggregating monocular distance measurement and precise vehicle detection. In order to obtain forward vehicle distance, a quick camera calibration method which only needs three physical points to calibrate related camera parameters is utilized. As for the forward vehicle detection, a multi-scale detection algorithm that regards the result of calibration as distance priori is proposed to improve the precision. Intensive experiments are conducted in our established real scene dataset and the results have demonstrated the effectiveness of the proposed framework.

  Click for Model/Code and Paper
Tracking as A Whole: Multi-Target Tracking by Modeling Group Behavior with Sequential Detection

Apr 22, 2019
Yuan Yuan, Yuwei Lu, Qi Wang

Video-based vehicle detection and tracking is one of the most important components for Intelligent Transportation Systems (ITS). When it comes to road junctions, the problem becomes even more difficult due to the occlusions and complex interactions among vehicles. In order to get a precise detection and tracking result, in this work we propose a novel tracking-by-detection framework. In the detection stage, we present a sequential detection model to deal with serious occlusions. In the tracking stage, we model group behavior to treat complex interactions with overlaps and ambiguities. The main contributions of this paper are twofold: 1) Shape prior is exploited in the sequential detection model to tackle occlusions in crowded scene. 2) Traffic force is defined in the traffic scene to model group behavior, and it can assist to handle complex interactions among vehicles. We evaluate the proposed approach on real surveillance videos at road junctions and the performance has demonstrated the effectiveness of our method.

  Click for Model/Code and Paper
Vision-to-Language Tasks Based on Attributes and Attention Mechanism

May 29, 2019
Xuelong Li, Aihong Yuan, Xiaoqiang Lu

Vision-to-language tasks aim to integrate computer vision and natural language processing together, which has attracted the attention of many researchers. For typical approaches, they encode image into feature representations and decode it into natural language sentences. While they neglect high-level semantic concepts and subtle relationships between image regions and natural language elements. To make full use of these information, this paper attempt to exploit the text guided attention and semantic-guided attention (SA) to find the more correlated spatial information and reduce the semantic gap between vision and language. Our method includes two level attention networks. One is the text-guided attention network which is used to select the text-related regions. The other is SA network which is used to highlight the concept-related regions and the region-related concepts. At last, all these information are incorporated to generate captions or answers. Practically, image captioning and visual question answering experiments have been carried out, and the experimental results have shown the excellent performance of the proposed approach.

* 15 pages, 6 figures, 50 references 

  Click for Model/Code and Paper
Bidirectional Learning for Domain Adaptation of Semantic Segmentation

Apr 24, 2019
Yunsheng Li, Lu Yuan, Nuno Vasconcelos

Domain adaptation for semantic image segmentation is very necessary since manually labeling large datasets with pixel-level labels is expensive and time consuming. Existing domain adaptation techniques either work on limited datasets, or yield not so good performance compared with supervised learning. In this paper, we propose a novel bidirectional learning framework for domain adaptation of segmentation. Using the bidirectional learning, the image translation model and the segmentation adaptation model can be learned alternatively and promote to each other. Furthermore, we propose a self-supervised learning algorithm to learn a better segmentation adaptation model and in return improve the image translation model. Experiments show that our method is superior to the state-of-the-art methods in domain adaptation of segmentation with a big margin. The source code is available at

* Accepted by CVPR2019 

  Click for Model/Code and Paper
3G structure for image caption generation

Apr 21, 2019
Aihong Yuan, Xuelong Li, Xiaoqiang Lu

It is a big challenge of computer vision to make machine automatically describe the content of an image with a natural language sentence. Previous works have made great progress on this task, but they only use the global or local image feature, which may lose some important subtle or global information of an image. In this paper, we propose a model with 3-gated model which fuses the global and local image features together for the task of image caption generation. The model mainly has three gated structures. 1) Gate for the global image feature, which can adaptively decide when and how much the global image feature should be imported into the sentence generator. 2) The gated recurrent neural network (RNN) is used as the sentence generator. 3) The gated feedback method for stacking RNN is employed to increase the capability of nonlinearity fitting. More specially, the global and local image features are combined together in this paper, which makes full use of the image information. The global image feature is controlled by the first gate and the local image feature is selected by the attention mechanism. With the latter two gates, the relationship between image and text can be well explored, which improves the performance of the language part as well as the multi-modal embedding part. Experimental results show that our proposed method outperforms the state-of-the-art for image caption generation.

* Neurocomputing 330: 17-28 (2019) 
* 35 pages, 7 figures, magazine 

  Click for Model/Code and Paper
Multi-modal gated recurrent units for image description

Apr 20, 2019
Xuelong Li, Aihong Yuan, Xiaoqiang Lu

Using a natural language sentence to describe the content of an image is a challenging but very important task. It is challenging because a description must not only capture objects contained in the image and the relationships among them, but also be relevant and grammatically correct. In this paper a multi-modal embedding model based on gated recurrent units (GRU) which can generate variable-length description for a given image. In the training step, we apply the convolutional neural network (CNN) to extract the image feature. Then the feature is imported into the multi-modal GRU as well as the corresponding sentence representations. The multi-modal GRU learns the inter-modal relations between image and sentence. And in the testing step, when an image is imported to our multi-modal GRU model, a sentence which describes the image content is generated. The experimental results demonstrate that our multi-modal GRU model obtains the state-of-the-art performance on Flickr8K, Flickr30K and MS COCO datasets.

* Multi-modal gated recurrent units for image description. Multimedia Tools Appl. 77(22): 29847-29869 (2018) 
* 25 pages, 7 figures, 6 tables, magazine 

  Click for Model/Code and Paper
CariGANs: Unpaired Photo-to-Caricature Translation

Nov 02, 2018
Kaidi Cao, Jing Liao, Lu Yuan

Facial caricature is an art form of drawing faces in an exaggerated way to convey humor or sarcasm. In this paper, we propose the first Generative Adversarial Network (GAN) for unpaired photo-to-caricature translation, which we call "CariGANs". It explicitly models geometric exaggeration and appearance stylization using two components: CariGeoGAN, which only models the geometry-to-geometry transformation from face photos to caricatures, and CariStyGAN, which transfers the style appearance from caricatures to face photos without any geometry deformation. In this way, a difficult cross-domain translation problem is decoupled into two easier tasks. The perceptual study shows that caricatures generated by our CariGANs are closer to the hand-drawn ones, and at the same time better persevere the identity, compared to state-of-the-art methods. Moreover, our CariGANs allow users to control the shape exaggeration degree and change the color/texture style by tuning the parameters or giving an example caricature.

* ACM Transactions on Graphics, Vol. 37, No. 6, Article 244. Publication date: November 2018 
* To appear at SIGGRAPH Asia 2018 

  Click for Model/Code and Paper
Transferring Rich Deep Features for Facial Beauty Prediction

Mar 20, 2018
Lu Xu, Jinhai Xiang, Xiaohui Yuan

Feature extraction plays a significant part in computer vision tasks. In this paper, we propose a method which transfers rich deep features from a pretrained model on face verification task and feeds the features into Bayesian ridge regression algorithm for facial beauty prediction. We leverage the deep neural networks that extracts more abstract features from stacked layers. Through simple but effective feature fusion strategy, our method achieves improved or comparable performance on SCUT-FBP dataset and ECCV HotOrNot dataset. Our experiments demonstrate the effectiveness of the proposed method and clarify the inner interpretability of facial beauty perception.

  Click for Model/Code and Paper
Most Relevant Explanation in Bayesian Networks

Jan 16, 2014
Changhe Yuan, Heejin Lim, Tsai-Ching Lu

A major inference task in Bayesian networks is explaining why some variables are observed in their particular states using a set of target variables. Existing methods for solving this problem often generate explanations that are either too simple (underspecified) or too complex (overspecified). In this paper, we introduce a method called Most Relevant Explanation (MRE) which finds a partial instantiation of the target variables that maximizes the generalized Bayes factor (GBF) as the best explanation for the given evidence. Our study shows that GBF has several theoretical properties that enable MRE to automatically identify the most relevant target variables in forming its explanation. In particular, conditional Bayes factor (CBF), defined as the GBF of a new explanation conditioned on an existing explanation, provides a soft measure on the degree of relevance of the variables in the new explanation in explaining the evidence given the existing explanation. As a result, MRE is able to automatically prune less relevant variables from its explanation. We also show that CBF is able to capture well the explaining-away phenomenon that is often represented in Bayesian networks. Moreover, we define two dominance relations between the candidate solutions and use the relations to generalize MRE to find a set of top explanations that is both diverse and representative. Case studies on several benchmark diagnostic Bayesian networks show that MRE is often able to find explanatory hypotheses that are not only precise but also concise.

* Journal Of Artificial Intelligence Research, Volume 42, pages 309-352, 2011 

  Click for Model/Code and Paper
Bayes Imbalance Impact Index: A Measure of Class Imbalanced Dataset for Classification Problem

Jan 29, 2019
Yang Lu, Yiu-ming Cheung, Yuan Yan Tang

Recent studies have shown that imbalance ratio is not the only cause of the performance loss of a classifier in imbalanced data classification. In fact, other data factors, such as small disjuncts, noises and overlapping, also play the roles in tandem with imbalance ratio, which makes the problem difficult. Thus far, the empirical studies have demonstrated the relationship between the imbalance ratio and other data factors only. To the best of our knowledge, there is no any measurement about the extent of influence of class imbalance on the classification performance of imbalanced data. Further, it is also unknown for a dataset which data factor is actually the main barrier for classification. In this paper, we focus on Bayes optimal classifier and study the influence of class imbalance from a theoretical perspective. Accordingly, we propose an instance measure called Individual Bayes Imbalance Impact Index ($IBI^3$) and a data measure called Bayes Imbalance Impact Index ($BI^3$). $IBI^3$ and $BI^3$ reflect the extent of influence purely by the factor of imbalance in terms of each minority class sample and the whole dataset, respectively. Therefore, $IBI^3$ can be used as an instance complexity measure of imbalance and $BI^3$ is a criterion to show the degree of how imbalance deteriorates the classification. As a result, we can therefore use $BI^3$ to judge whether it is worth using imbalance recovery methods like sampling or cost-sensitive methods to recover the performance loss of a classifier. The experiments show that $IBI^3$ is highly consistent with the increase of prediction score made by the imbalance recovery methods and $BI^3$ is highly consistent with the improvement of F1 score made by the imbalance recovery methods on both synthetic and real benchmark datasets.

* 13 pages 

  Click for Model/Code and Paper
Analysis of Bag-of-n-grams Representation's Properties Based on Textual Reconstruction

Sep 18, 2018
Qi Huang, Zhanghao Chen, Zijie Lu, Yuan Ye

Despite its simplicity, bag-of-n-grams sen- tence representation has been found to excel in some NLP tasks. However, it has not re- ceived much attention in recent years and fur- ther analysis on its properties is necessary. We propose a framework to investigate the amount and type of information captured in a general- purposed bag-of-n-grams sentence represen- tation. We first use sentence reconstruction as a tool to obtain bag-of-n-grams representa- tion that contains general information of the sentence. We then run prediction tasks (sen- tence length, word content, phrase content and word order) using the obtained representation to look into the specific type of information captured in the representation. Our analysis demonstrates that bag-of-n-grams representa- tion does contain sentence structure level in- formation. However, incorporating n-grams with higher order n empirically helps little with encoding more information in general, except for phrase content information.

  Click for Model/Code and Paper
Arbitrary Style Transfer with Deep Feature Reshuffle

Jun 20, 2018
Shuyang Gu, Congliang Chen, Jing Liao, Lu Yuan

This paper introduces a novel method by reshuffling deep features (i.e., permuting the spacial locations of a feature map) of the style image for arbitrary style transfer. We theoretically prove that our new style loss based on reshuffle connects both global and local style losses respectively used by most parametric and non-parametric neural style transfer methods. This simple idea can effectively address the challenging issues in existing style transfer methods. On one hand, it can avoid distortions in local style patterns, and allow semantic-level transfer, compared with neural parametric methods. On the other hand, it can preserve globally similar appearance to the style image, and avoid wash-out artifacts, compared with neural non-parametric methods. Based on the proposed loss, we also present a progressive feature-domain optimization approach. The experiments show that our method is widely applicable to various styles, and produces better quality than existing methods.

  Click for Model/Code and Paper
FairGAN: Fairness-aware Generative Adversarial Networks

May 28, 2018
Depeng Xu, Shuhan Yuan, Lu Zhang, Xintao Wu

Fairness-aware learning is increasingly important in data mining. Discrimination prevention aims to prevent discrimination in the training data before it is used to conduct predictive analysis. In this paper, we focus on fair data generation that ensures the generated data is discrimination free. Inspired by generative adversarial networks (GAN), we present fairness-aware generative adversarial networks, called FairGAN, which are able to learn a generator producing fair data and also preserving good data utility. Compared with the naive fair data generation models, FairGAN further ensures the classifiers which are trained on generated data can achieve fair classification on real data. Experiments on a real dataset show the effectiveness of FairGAN.

  Click for Model/Code and Paper
Towards High Performance Video Object Detection

Nov 30, 2017
Xizhou Zhu, Jifeng Dai, Lu Yuan, Yichen Wei

There has been significant progresses for image object detection in recent years. Nevertheless, video object detection has received little attention, although it is more challenging and more important in practical scenarios. Built upon the recent works, this work proposes a unified approach based on the principle of multi-frame end-to-end learning of features and cross-frame motion. Our approach extends prior works with three new techniques and steadily pushes forward the performance envelope (speed-accuracy tradeoff), towards high performance video object detection.

  Click for Model/Code and Paper
Neural Color Transfer between Images

Oct 02, 2017
Mingming He, Jing Liao, Lu Yuan, Pedro V. Sander

We propose a new algorithm for color transfer between images that have perceptually similar semantic structures. We aim to achieve a more accurate color transfer that leverages semantically-meaningful dense correspondence between images. To accomplish this, our algorithm uses neural representations for matching. Additionally, the color transfer should be spatially-variant and globally coherent. Therefore, our algorithm optimizes a local linear model for color transfer satisfying both local and global constraints. Our proposed approach jointly optimize matching and color transfer, adopting a coarse-to-fine strategy. The proposed method can be successfully extended from "one-to-one" to "one-to-many" color transfers. The latter further addresses the problem of mismatching elements of the input image. We validate our proposed method by testing it on a large variety of image content.

  Click for Model/Code and Paper
Spectrum-based deep neural networks for fraud detection

Jun 03, 2017
Shuhan Yuan, Xintao Wu, Jun Li, Aidong Lu

In this paper, we focus on fraud detection on a signed graph with only a small set of labeled training data. We propose a novel framework that combines deep neural networks and spectral graph analysis. In particular, we use the node projection (called as spectral coordinate) in the low dimensional spectral space of the graph's adjacency matrix as input of deep neural networks. Spectral coordinates in the spectral space capture the most useful topology information of the network. Due to the small dimension of spectral coordinates (compared with the dimension of the adjacency matrix derived from a graph), training deep neural networks becomes feasible. We develop and evaluate two neural networks, deep autoencoder and convolutional neural network, in our fraud detection framework. Experimental results on a real signed graph show that our spectrum based deep neural networks are effective in fraud detection.

  Click for Model/Code and Paper
Annealed MAP

Jul 11, 2012
Changhe Yuan, Tsai-Ching Lu, Marek J. Druzdzel

Maximum a Posteriori assignment (MAP) is the problem of finding the most probable instantiation of a set of variables given the partial evidence on the other variables in a Bayesian network. MAP has been shown to be a NP-hard problem [22], even for constrained networks, such as polytrees [18]. Hence, previous approaches often fail to yield any results for MAP problems in large complex Bayesian networks. To address this problem, we propose AnnealedMAP algorithm, a simulated annealing-based MAP algorithm. The AnnealedMAP algorithm simulates a non-homogeneous Markov chain whose invariant function is a probability density that concentrates itself on the modes of the target density. We tested this algorithm on several real Bayesian networks. The results show that, while maintaining good quality of the MAP solutions, the AnnealedMAP algorithm is also able to solve many problems that are beyond the reach of previous approaches.

* Appears in Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence (UAI2004) 

  Click for Model/Code and Paper
Towards High Performance Video Object Detection for Mobiles

Apr 16, 2018
Xizhou Zhu, Jifeng Dai, Xingchi Zhu, Yichen Wei, Lu Yuan

Despite the recent success of video object detection on Desktop GPUs, its architecture is still far too heavy for mobiles. It is also unclear whether the key principles of sparse feature propagation and multi-frame feature aggregation apply at very limited computational resources. In this paper, we present a light weight network architecture for video object detection on mobiles. Light weight image object detector is applied on sparse key frames. A very small network, Light Flow, is designed for establishing correspondence across frames. A flow-guided GRU module is designed to effectively aggregate features on key frames. For non-key frames, sparse feature propagation is performed. The whole network can be trained end-to-end. The proposed system achieves 60.2% mAP score at speed of 25.6 fps on mobiles (e.g., HuaWei Mate 8).

  Click for Model/Code and Paper
LAGE: A Java Framework to reconstruct Gene Regulatory Networks from Large-Scale Continues Expression Data

Nov 09, 2012
Yang Lu, Mengying Wang, Kenny Q. Zhu, Bo Yuan

LAGE is a systematic framework developed in Java. The motivation of LAGE is to provide a scalable and parallel solution to reconstruct Gene Regulatory Networks (GRNs) from continuous gene expression data for very large amount of genes. The basic idea of our framework is motivated by the philosophy of divideand-conquer. Specifically, LAGE recursively partitions genes into multiple overlapping communities with much smaller sizes, learns intra-community GRNs respectively before merge them altogether. Besides, the complete information of overlapping communities serves as the byproduct, which could be used to mine meaningful functional modules in biological networks.

* 2 pages 

  Click for Model/Code and Paper