Research papers and code for "Lukas Schott":
Despite much effort, deep neural networks remain highly susceptible to tiny input perturbations and even for MNIST, one of the most common toy datasets in computer vision, no neural network model exists for which adversarial perturbations are large and make semantic sense to humans. We show that even the widely recognized and by far most successful defense by Madry et al. (1) overfits on the L-infinity metric (it's highly susceptible to L2 and L0 perturbations), (2) classifies unrecognizable images with high certainty, (3) performs not much better than simple input binarization and (4) features adversarial perturbations that make little sense to humans. These results suggest that MNIST is far from being solved in terms of adversarial robustness. We present a novel robust classification model that performs analysis by synthesis using learned class-conditional data distributions. We derive bounds on the robustness and go to great length to empirically evaluate our model using maximally effective adversarial attacks by (a) applying decision-based, score-based, gradient-based and transfer-based attacks for several different Lp norms, (b) by designing a new attack that exploits the structure of our defended model and (c) by devising a novel decision-based attack that seeks to minimize the number of perturbed pixels (L0). The results suggest that our approach yields state-of-the-art robustness on MNIST against L0, L2 and L-infinity perturbations and we demonstrate that most adversarial examples are strongly perturbed towards the perceptual boundary between the original and the adversarial class.

Click to Read Paper and Get Code
Learned boundary maps are known to outperform hand- crafted ones as a basis for the watershed algorithm. We show, for the first time, how to train watershed computation jointly with boundary map prediction. The estimator for the merging priorities is cast as a neural network that is con- volutional (over space) and recurrent (over iterations). The latter allows learning of complex shape priors. The method gives the best known seeded segmentation results on the CREMI segmentation challenge.

* The first two authors contributed equally
Click to Read Paper and Get Code
Deep learning methods have resulted in significant performance improvements in several application domains and as such several software frameworks have been developed to facilitate their implementation. This paper presents a comparative study of five deep learning frameworks, namely Caffe, Neon, TensorFlow, Theano, and Torch, on three aspects: extensibility, hardware utilization, and speed. The study is performed on several types of deep learning architectures and we evaluate the performance of the above frameworks when employed on a single machine for both (multi-threaded) CPU and GPU (Nvidia Titan X) settings. The speed performance metrics used here include the gradient computation time, which is important during the training phase of deep networks, and the forward time, which is important from the deployment perspective of trained networks. For convolutional networks, we also report how each of these frameworks support various convolutional algorithms and their corresponding performance. From our experiments, we observe that Theano and Torch are the most easily extensible frameworks. We observe that Torch is best suited for any deep architecture on CPU, followed by Theano. It also achieves the best performance on the GPU for large convolutional and fully connected networks, followed closely by Neon. Theano achieves the best performance on GPU for training and deployment of LSTM networks. Caffe is the easiest for evaluating the performance of standard deep architectures. Finally, TensorFlow is a very flexible framework, similar to Theano, but its performance is currently not competitive compared to the other studied frameworks.

* Submitted to KDD 2016 with TensorFlow results added. At the time of submission to KDD, TensorFlow was available only with cuDNN v.2 and thus its performance is reported with that version
Click to Read Paper and Get Code