Research papers and code for "Maarten Grachten":
Spurred by the potential of deep learning, computational music generation has gained renewed academic interest. A crucial issue in music generation is that of user control, especially in scenarios where the music generation process is conditioned on existing musical material. Here we propose a model for conditional kick drum track generation that takes existing musical material as input, in addition to a low-dimensional code that encodes the desired relation between the existing material and the new material to be generated. These relational codes are learned in an unsupervised manner from a music dataset. We show that codes can be sampled to create a variety of musically plausible kick drum tracks and that the model can be used to transfer kick drum patterns from one song to another. Lastly, we demonstrate that the learned codes are largely invariant to tempo and time-shift.

* Paper accepted at the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2019), New Paltz, New York, U.S.A., October 20-23; 6 pages, 3 figures, 1 table
Click to Read Paper and Get Code
Content-invariance in mapping codes learned by GAEs is a useful feature for various relation learning tasks. In this paper we show that the content-invariance of mapping codes for images of 2D and 3D rotated objects can be substantially improved by extending the standard GAE loss (symmetric reconstruction error) with a regularization term that penalizes the symmetric cross-reconstruction error. This error term involves reconstruction of pairs with mapping codes obtained from other pairs exhibiting similar transformations. Although this would principally require knowledge of the transformations exhibited by training pairs, our experiments show that a bootstrapping approach can sidestep this issue, and that the regularization term can effectively be used in an unsupervised setting.

* 10 pages
Click to Read Paper and Get Code
In music and audio production, attenuation of spectral resonances is an important step towards a technically correct result. In this paper we present a two-component system to automate the task of resonance equalization. The first component is a dynamic equalizer that automatically detects resonances and offers to attenuate them by a user-specified factor. The second component is a deep neural network that predicts the optimal attenuation factor based on the windowed audio. The network is trained and validated on empirical data gathered from an experiment in which sound engineers choose their preferred attenuation factors for a set of tracks. We test two distinct network architectures for the predictive model and find that a dilated residual network operating directly on the audio signal is on a par with a network architecture that requires a prior audio feature extraction stage. Both architectures predict human-preferred resonance attenuation factors significantly better than a baseline approach.

Click to Read Paper and Get Code
Connectionist sequence models (e.g., RNNs) applied to musical sequences suffer from two known problems: First, they have strictly "absolute pitch perception". Therefore, they fail to generalize over musical concepts which are commonly perceived in terms of relative distances between pitches (e.g., melodies, scale types, modes, cadences, or chord types). Second, they fall short of capturing the concepts of repetition and musical form. In this paper we introduce the recurrent gated autoencoder (RGAE), a recurrent neural network which learns and operates on interval representations of musical sequences. The relative pitch modeling increases generalization and reduces sparsity in the input data. Furthermore, it can learn sequences of copy-and-shift operations (i.e. chromatically transposed copies of musical fragments)---a promising capability for learning musical repetition structure. We show that the RGAE improves the state of the art for general connectionist sequence models in learning to predict monophonic melodies, and that ensembles of relative and absolute music processing models improve the results appreciably. Furthermore, we show that the relative pitch processing of the RGAE naturally facilitates the learning and the generation of sequences of copy-and-shift operations, wherefore the RGAE greatly outperforms a common absolute pitch recurrent neural network on this task.

* Paper accepted at the 19th International Society for Music Information Retrieval Conference, ISMIR 2018, Paris, France, September 23-27; 8 pages, 3 figures
Click to Read Paper and Get Code
Many music theoretical constructs (such as scale types, modes, cadences, and chord types) are defined in terms of pitch intervals---relative distances between pitches. Therefore, when computer models are employed in music tasks, it can be useful to operate on interval representations rather than on the raw musical surface. Moreover, interval representations are transposition-invariant, valuable for tasks like audio alignment, cover song detection and music structure analysis. We employ a gated autoencoder to learn fixed-length, invertible and transposition-invariant interval representations from polyphonic music in the symbolic domain and in audio. An unsupervised training method is proposed yielding an organization of intervals in the representation space which is musically plausible. Based on the representations, a transposition-invariant self-similarity matrix is constructed and used to determine repeated sections in symbolic music and in audio, yielding competitive results in the MIREX task "Discovery of Repeated Themes and Sections".

* Paper accepted at the 19th International Society for Music Information Retrieval Conference, ISMIR 2018, Paris, France, September 23-27; 8 pages, 5 figures
Click to Read Paper and Get Code
We introduce a method for imposing higher-level structure on generated, polyphonic music. A Convolutional Restricted Boltzmann Machine (C-RBM) as a generative model is combined with gradient descent constraint optimisation to provide further control over the generation process. Among other things, this allows for the use of a "template" piece, from which some structural properties can be extracted, and transferred as constraints to the newly generated material. The sampling process is guided with Simulated Annealing to avoid local optima, and to find solutions that both satisfy the constraints, and are relatively stable with respect to the C-RBM. Results show that with this approach it is possible to control the higher-level self-similarity structure, the meter, and the tonal properties of the resulting musical piece, while preserving its local musical coherence.

* Journal of Creative Music Systems, Volume 2, Issue 1, March 2018
* 31 pages, 11 figures
Click to Read Paper and Get Code
A remarkable feature of human beings is their capacity for creative behaviour, referring to their ability to react to problems in ways that are novel, surprising, and useful. Transformational creativity is a form of creativity where the creative behaviour is induced by a transformation of the actor's conceptual space, that is, the representational system with which the actor interprets its environment. In this report, we focus on ways of adapting systems of learned representations as they switch from performing one task to performing another. We describe an experimental comparison of multiple strategies for adaptation of learned features, and evaluate how effectively each of these strategies realizes the adaptation, in terms of the amount of training, and in terms of their ability to cope with restricted availability of training data. We show, among other things, that across handwritten digits, natural images, and classical music, adaptive strategies are systematically more effective than a baseline method that starts learning from scratch.

Click to Read Paper and Get Code
Music is usually highly structured and it is still an open question how to design models which can successfully learn to recognize and represent musical structure. A fundamental problem is that structurally related patterns can have very distinct appearances, because the structural relationships are often based on transformations of musical material, like chromatic or diatonic transposition, inversion, retrograde, or rhythm change. In this preliminary work, we study the potential of two unsupervised learning techniques - Restricted Boltzmann Machines (RBMs) and Gated Autoencoders (GAEs) - to capture pre-defined transformations from constructed data pairs. We evaluate the models by using the learned representations as inputs in a discriminative task where for a given type of transformation (e.g. diatonic transposition), the specific relation between two musical patterns must be recognized (e.g. an upward transposition of diatonic steps). Furthermore, we measure the reconstruction error of models when reconstructing musical transformed patterns. Lastly, we test the models in an analogy-making task. We find that it is difficult to learn musical transformations with the RBM and that the GAE is much more adequate for this task, since it is able to learn representations of specific transformations that are largely content-invariant. We believe these results show that models such as GAEs may provide the basis for more encompassing music analysis systems, by endowing them with a better understanding of the structures underlying music.

* In Proceedings of the 2nd Conference on Computer Simulation of Musical Creativity (CSMC 2017)
Click to Read Paper and Get Code
Tonal structure is in part conveyed by statistical regularities between musical events, and research has shown that computational models reflect tonal structure in music by capturing these regularities in schematic constructs like pitch histograms. Of the few studies that model the acquisition of perceptual learning from musical data, most have employed self-organizing models that learn a topology of static descriptions of musical contexts. Also, the stimuli used to train these models are often symbolic rather than acoustically faithful representations of musical material. In this work we investigate whether sequential predictive models of musical memory (specifically, recurrent neural networks), trained on audio from commercial CD recordings, induce tonal knowledge in a similar manner to listeners (as shown in behavioral studies in music perception). Our experiments indicate that various types of recurrent neural networks produce musical expectations that clearly convey tonal structure. Furthermore, the results imply that although implicit knowledge of tonal structure is a necessary condition for accurate musical expectation, the most accurate predictive models also use other cues beyond the tonal structure of the musical context.

* In Proceedings of the 18th International Society of Music Information Retrieval Conference (ISMIR 2017)
Click to Read Paper and Get Code
In this paper we present preliminary work examining the relationship between the formation of expectations and the realization of musical performances, paying particular attention to expressive tempo and dynamics. To compute features that reflect what a listener is expecting to hear, we employ a computational model of auditory expectation called the Information Dynamics of Music model (IDyOM). We then explore how well these expectancy features -- when combined with score descriptors using the Basis-Function modeling approach -- can predict expressive tempo and dynamics in a dataset of Mozart piano sonata performances. Our results suggest that using expectancy features significantly improves the predictions for tempo.

* 6 pages, 1 figure, 10th International Workshop on Machine Learning and Music (MML 2017)
Click to Read Paper and Get Code