Models, code, and papers for "Manfred Morari":

Optimization-Based Autonomous Racing of 1:43 Scale RC Cars

Nov 20, 2017
Alexander Liniger, Alexander Domahidi, Manfred Morari

This paper describes autonomous racing of RC race cars based on mathematical optimization. Using a dynamical model of the vehicle, control inputs are computed by receding horizon based controllers, where the objective is to maximize progress on the track subject to the requirement of staying on the track and avoiding opponents. Two different control formulations are presented. The first controller employs a two-level structure, consisting of a path planner and a nonlinear model predictive controller (NMPC) for tracking. The second controller combines both tasks in one nonlinear optimization problem (NLP) following the ideas of contouring control. Linear time varying models obtained by linearization are used to build local approximations of the control NLPs in the form of convex quadratic programs (QPs) at each sampling time. The resulting QPs have a typical MPC structure and can be solved in the range of milliseconds by recent structure exploiting solvers, which is key to the real-time feasibility of the overall control scheme. Obstacle avoidance is incorporated by means of a high-level corridor planner based on dynamic programming, which generates convex constraints for the controllers according to the current position of opponents and the track layout. The control performance is investigated experimentally using 1:43 scale RC race cars, driven at speeds of more than 3 m/s and in operating regions with saturated rear tire forces (drifting). The algorithms run at 50 Hz sampling rate on embedded computing platforms, demonstrating the real-time feasibility and high performance of optimization-based approaches for autonomous racing.

* Optimal Control Applications and Methods, 36(5), 2015, pp.628-647 

  Click for Model/Code and Paper
Probabilistic Verification and Reachability Analysis of Neural Networks via Semidefinite Programming

Oct 09, 2019
Mahyar Fazlyab, Manfred Morari, George J. Pappas

Quantifying the robustness of neural networks or verifying their safety properties against input uncertainties or adversarial attacks have become an important research area in learning-enabled systems. Most results concentrate around the worst-case scenario where the input of the neural network is perturbed within a norm-bounded uncertainty set. In this paper, we consider a probabilistic setting in which the uncertainty is random with known first two moments. In this context, we discuss two relevant problems: (i) probabilistic safety verification, in which the goal is to find an upper bound on the probability of violating a safety specification; and (ii) confidence ellipsoid estimation, in which given a confidence ellipsoid for the input of the neural network, our goal is to compute a confidence ellipsoid for the output. Due to the presence of nonlinear activation functions, these two problems are very difficult to solve exactly. To simplify the analysis, our main idea is to abstract the nonlinear activation functions by a combination of affine and quadratic constraints they impose on their input-output pairs. We then show that the safety of the abstracted network, which is sufficient for the safety of the original network, can be analyzed using semidefinite programming. We illustrate the performance of our approach with numerical experiments.

  Click for Model/Code and Paper
Safety Verification and Robustness Analysis of Neural Networks via Quadratic Constraints and Semidefinite Programming

Mar 04, 2019
Mahyar Fazlyab, Manfred Morari, George J. Pappas

Analyzing the robustness of neural networks against norm-bounded uncertainties and adversarial attacks has found many applications ranging from safety verification to robust training. In this paper, we propose a semidefinite programming (SDP) framework for safety verification and robustness analysis of neural networks with general activation functions. Our main idea is to abstract various properties of activation functions (e.g., monotonicity, bounded slope, bounded values, and repetition across layers) with the formalism of quadratic constraints. We then analyze the safety properties of the abstracted network via the S-procedure and semidefinite programming. Compared to other semidefinite relaxations proposed in the literature, our method is less conservative, especially for deep networks, with an order of magnitude reduction in computational complexity. Furthermore, our approach is applicable to any activation functions.

  Click for Model/Code and Paper
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks

Jun 12, 2019
Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, George J. Pappas

Tight estimation of the Lipschitz constant for deep neural networks (DNNs) is useful in many applications ranging from robustness certification of classifiers to stability analysis of closed-loop systems with reinforcement learning controllers. Existing methods in the literature for estimating the Lipschitz constant suffer from either lack of accuracy or poor scalability. In this paper, we present a convex optimization framework to compute guaranteed upper bounds on the Lipschitz constant of DNNs both accurately and efficiently. Our main idea is to interpret activation functions as gradients of convex potential functions. Hence, they satisfy certain properties that can be described by quadratic constraints. This particular description allows us to pose the Lipschitz constant estimation problem as a semidefinite program (SDP). The resulting SDP can be adapted to increase either the estimation accuracy (by capturing the interaction between activation functions of different layers) or scalability (by decomposition and parallel implementation). We illustrate the utility of our approach with a variety of experiments on randomly generated networks and on classifiers trained on the MNIST and Iris datasets. In particular, we experimentally demonstrate that our Lipschitz bounds are the most accurate compared to those in the literature. We also study the impact of adversarial training methods on the Lipschitz bounds of the resulting classifiers and show that our bounds can be used to efficiently provide robustness guarantees.

  Click for Model/Code and Paper