Research papers and code for "Massimiliano Mancini":
Deep networks have brought significant advances in robot perception, enabling to improve the capabilities of robots in several visual tasks, ranging from object detection and recognition to pose estimation, semantic scene segmentation and many others. Still, most approaches typically address visual tasks in isolation, resulting in overspecialized models which achieve strong performances in specific applications but work poorly in other (often related) tasks. This is clearly sub-optimal for a robot which is often required to perform simultaneously multiple visual recognition tasks in order to properly act and interact with the environment. This problem is exacerbated by the limited computational and memory resources typically available onboard to a robotic platform. The problem of learning flexible models which can handle multiple tasks in a lightweight manner has recently gained attention in the computer vision community and benchmarks supporting this research have been proposed. In this work we study this problem in the robot vision context, proposing a new benchmark, the RGB-D Triathlon, and evaluating state of the art algorithms in this novel challenging scenario. We also define a new evaluation protocol, better suited to the robot vision setting. Results shed light on the strengths and weaknesses of existing approaches and on open issues, suggesting directions for future research.

* This work has been submitted to IROS/RAL 2019
Click to Read Paper and Get Code
The ability to categorize is a cornerstone of visual intelligence, and a key functionality for artificial, autonomous visual machines. This problem will never be solved without algorithms able to adapt and generalize across visual domains. Within the context of domain adaptation and generalization, this paper focuses on the predictive domain adaptation scenario, namely the case where no target data are available and the system has to learn to generalize from annotated source images plus unlabeled samples with associated metadata from auxiliary domains. Our contributionis the first deep architecture that tackles predictive domainadaptation, able to leverage over the information broughtby the auxiliary domains through a graph. Moreover, we present a simple yet effective strategy that allows us to take advantage of the incoming target data at test time, in a continuous domain adaptation scenario. Experiments on three benchmark databases support the value of our approach.

* CVPR 2019 (oral)
Click to Read Paper and Get Code
A long standing problem in visual object categorization is the ability of algorithms to generalize across different testing conditions. The problem has been formalized as a covariate shift among the probability distributions generating the training data (source) and the test data (target) and several domain adaptation methods have been proposed to address this issue. While these approaches have considered the single source-single target scenario, it is plausible to have multiple sources and require adaptation to any possible target domain. This last scenario, named Domain Generalization (DG), is the focus of our work. Differently from previous DG methods which learn domain invariant representations from source data, we design a deep network with multiple domain-specific classifiers, each associated to a source domain. At test time we estimate the probabilities that a target sample belongs to each source domain and exploit them to optimally fuse the classifiers predictions. To further improve the generalization ability of our model, we also introduced a domain agnostic component supporting the final classifier. Experiments on two public benchmarks demonstrate the power of our approach.

Click to Read Paper and Get Code
Visual recognition algorithms are required today to exhibit adaptive abilities. Given a deep model trained on a specific, given task, it would be highly desirable to be able to adapt incrementally to new tasks, preserving scalability as the number of new tasks increases, while at the same time avoiding catastrophic forgetting issues. Recent work has shown that masking the internal weights of a given original conv-net through learned binary variables is a promising strategy. We build upon this intuition and take into account more elaborated affine transformations of the convolutional weights that include learned binary masks. We show that with our generalization it is possible to achieve significantly higher levels of adaptation to new tasks, enabling the approach to compete with fine tuning strategies by requiring slightly more than 1 bit per network parameter per additional task. Experiments on two popular benchmarks showcase the power of our approach, that achieves the new state of the art on the Visual Decathlon Challenge.

Click to Read Paper and Get Code
Traditional place categorization approaches in robot vision assume that training and test images have similar visual appearance. Therefore, any seasonal, illumination and environmental changes typically lead to severe degradation in performance. To cope with this problem, recent works have proposed to adopt domain adaptation techniques. While effective, these methods assume that some prior information about the scenario where the robot will operate is available at training time. Unfortunately, in many cases this assumption does not hold, as we often do not know where a robot will be deployed. To overcome this issue, in this paper we present an approach which aims at learning classification models able to generalize to unseen scenarios. Specifically, we propose a novel deep learning framework for domain generalization. Our method develops from the intuition that, given a set of different classification models associated to known domains (e.g. corresponding to multiple environments, robots), the best model for a new sample in the novel domain can be computed directly at test time by optimally combining the known models. To implement our idea, we exploit recent advances in deep domain adaptation and design a Convolutional Neural Network architecture with novel layers performing a weighted version of Batch Normalization. Our experiments, conducted on three common datasets for robot place categorization, confirm the validity of our contribution.

Click to Read Paper and Get Code
Word embeddings are widely used in Natural Language Processing, mainly due to their success in capturing semantic information from massive corpora. However, their creation process does not allow the different meanings of a word to be automatically separated, as it conflates them into a single vector. We address this issue by proposing a new model which learns word and sense embeddings jointly. Our model exploits large corpora and knowledge from semantic networks in order to produce a unified vector space of word and sense embeddings. We evaluate the main features of our approach both qualitatively and quantitatively in a variety of tasks, highlighting the advantages of the proposed method in comparison to state-of-the-art word- and sense-based models.

* Accepted in CoNLL 2017. 12 pages
Click to Read Paper and Get Code
This paper presents an approach for semantic place categorization using data obtained from RGB cameras. Previous studies on visual place recognition and classification have shown that, by considering features derived from pre-trained Convolutional Neural Networks (CNNs) in combination with part-based classification models, high recognition accuracy can be achieved, even in presence of occlusions and severe viewpoint changes. Inspired by these works, we propose to exploit local deep representations, representing images as set of regions applying a Na\"{i}ve Bayes Nearest Neighbor (NBNN) model for image classification. As opposed to previous methods where CNNs are merely used as feature extractors, our approach seamlessly integrates the NBNN model into a fully-convolutional neural network. Experimental results show that the proposed algorithm outperforms previous methods based on pre-trained CNN models and that, when employed in challenging robot place recognition tasks, it is robust to occlusions, environmental and sensor changes.

* IEEE Robotics and Automation Letters, Vol. 2, n. 3, July 2017
Click to Read Paper and Get Code
While today's robots are able to perform sophisticated tasks, they can only act on objects they have been trained to recognize. This is a severe limitation: any robot will inevitably see new objects in unconstrained settings, and thus will always have visual knowledge gaps. However, standard visual modules are usually built on a limited set of classes and are based on the strong prior that an object must belong to one of those classes. Identifying whether an instance does not belong to the set of known categories (i.e. open set recognition), only partially tackles this problem, as a truly autonomous agent should be able not only to detect what it does not know, but also to extend dynamically its knowledge about the world. We contribute to this challenge with a deep learning architecture that can dynamically update its known classes in an end-to-end fashion. The proposed deep network, based on a deep extension of a non-parametric model, detects whether a perceived object belongs to the set of categories known by the system and learns it without the need to retrain the whole system from scratch. Annotated images about the new category can be provided by an 'oracle' (i.e. human supervision), or by autonomous mining of the Web. Experiments on two different databases and on a robot platform demonstrate the promise of our approach.

* ICRA 2019
Click to Read Paper and Get Code
Technological developments call for increasing perception and action capabilities of robots. Among other skills, vision systems that can adapt to any possible change in the working conditions are needed. Since these conditions are unpredictable, we need benchmarks which allow to assess the generalization and robustness capabilities of our visual recognition algorithms. In this work we focus on robotic kitting in unconstrained scenarios. As a first contribution, we present a new visual dataset for the kitting task. Differently from standard object recognition datasets, we provide images of the same objects acquired under various conditions where camera, illumination and background are changed. This novel dataset allows for testing the robustness of robot visual recognition algorithms to a series of different domain shifts both in isolation and unified. Our second contribution is a novel online adaptation algorithm for deep models, based on batch-normalization layers, which allows to continuously adapt a model to the current working conditions. Differently from standard domain adaptation algorithms, it does not require any image from the target domain at training time. We benchmark the performance of the algorithm on the proposed dataset, showing its capability to fill the gap between the performances of a standard architecture and its counterpart adapted offline to the given target domain.

* Accepted to IROS 2018
Click to Read Paper and Get Code
Current Domain Adaptation (DA) methods based on deep architectures assume that the source samples arise from a single distribution. However, in practice, most datasets can be regarded as mixtures of multiple domains. In these cases exploiting single-source DA methods for learning target classifiers may lead to sub-optimal, if not poor, results. In addition, in many applications it is difficult to manually provide the domain labels for all source data points, i.e. latent domains should be automatically discovered. This paper introduces a novel Convolutional Neural Network (CNN) architecture which (i) automatically discovers latent domains in visual datasets and (ii) exploits this information to learn robust target classifiers. Our approach is based on the introduction of two main components, which can be embedded into any existing CNN architecture: (i) a side branch that automatically computes the assignment of a source sample to a latent domain and (ii) novel layers that exploit domain membership information to appropriately align the distribution of the CNN internal feature representations to a reference distribution. We test our approach on publicly-available datasets, showing that it outperforms state-of-the-art multi-source DA methods by a large margin.

* CVPR 2018
Click to Read Paper and Get Code
The "digital Michelangelo project" was a seminal computer vision project in the early 2000's that pushed the capabilities of acquisition systems and involved multiple people from diverse fields, many of whom are now leaders in industry and academia. Reviewing this project with modern eyes provides us with the opportunity to reflect on several issues, relevant now as then to the field of computer vision and research in general, that go beyond the technical aspects of the work. This article was written in the context of a reading group competition at the week-long International Computer Vision Summer School 2017 (ICVSS) on Sicily, Italy. To deepen the participants understanding of computer vision and to foster a sense of community, various reading groups were tasked to highlight important lessons which may be learned from provided literature, going beyond the contents of the paper. This report is the winning entry of this guided discourse (Fig. 1). The authors closely examined the origins, fruits and most importantly lessons about research in general which may be distilled from the "digital Michelangelo project". Discussions leading to this report were held within the group as well as with Hao Li, the group mentor.

* 5 pages. 3 figures
Click to Read Paper and Get Code