Models, code, and papers for "Mateusz Malinowski":

The Visual QA Devil in the Details: The Impact of Early Fusion and Batch Norm on CLEVR

Sep 11, 2018
Mateusz Malinowski, Carl Doersch

Visual QA is a pivotal challenge for higher-level reasoning, requiring understanding language, vision, and relationships between many objects in a scene. Although datasets like CLEVR are designed to be unsolvable without such complex relational reasoning, some surprisingly simple feed-forward, "holistic" models have recently shown strong performance on this dataset. These models lack any kind of explicit iterative, symbolic reasoning procedure, which are hypothesized to be necessary for counting objects, narrowing down the set of relevant objects based on several attributes, etc. The reason for this strong performance is poorly understood. Hence, our work analyzes such models, and finds that minor architectural elements are crucial to performance. In particular, we find that \textit{early fusion} of language and vision provides large performance improvements. This contrasts with the late fusion approaches popular at the dawn of Visual QA. We propose a simple module we call Multimodal Core, which we hypothesize performs the fundamental operations for multimodal tasks. We believe that understanding why these elements are so important to complex question answering will aid the design of better-performing algorithms for Visual QA while minimizing hand-engineering effort.

* Presented at ECCV'18 Workshop on Shortcomings in Vision and Language 

  Click for Model/Code and Paper
Tutorial on Answering Questions about Images with Deep Learning

Oct 04, 2016
Mateusz Malinowski, Mario Fritz

Together with the development of more accurate methods in Computer Vision and Natural Language Understanding, holistic architectures that answer on questions about the content of real-world images have emerged. In this tutorial, we build a neural-based approach to answer questions about images. We base our tutorial on two datasets: (mostly on) DAQUAR, and (a bit on) VQA. With small tweaks the models that we present here can achieve a competitive performance on both datasets, in fact, they are among the best methods that use a combination of LSTM with a global, full frame CNN representation of an image. We hope that after reading this tutorial, the reader will be able to use Deep Learning frameworks, such as Keras and introduced Kraino, to build various architectures that will lead to a further performance improvement on this challenging task.

* The tutorial was presented at '2nd Summer School on Integrating Vision and Language: Deep Learning' in Malta, 2016 

  Click for Model/Code and Paper
Learnable Pooling Regions for Image Classification

May 05, 2015
Mateusz Malinowski, Mario Fritz

Biologically inspired, from the early HMAX model to Spatial Pyramid Matching, pooling has played an important role in visual recognition pipelines. Spatial pooling, by grouping of local codes, equips these methods with a certain degree of robustness to translation and deformation yet preserving important spatial information. Despite the predominance of this approach in current recognition systems, we have seen little progress to fully adapt the pooling strategy to the task at hand. This paper proposes a model for learning task dependent pooling scheme -- including previously proposed hand-crafted pooling schemes as a particular instantiation. In our work, we investigate the role of different regularization terms showing that the smooth regularization term is crucial to achieve strong performance using the presented architecture. Finally, we propose an efficient and parallel method to train the model. Our experiments show improved performance over hand-crafted pooling schemes on the CIFAR-10 and CIFAR-100 datasets -- in particular improving the state-of-the-art to 56.29% on the latter.


  Click for Model/Code and Paper
Towards a Visual Turing Challenge

May 05, 2015
Mateusz Malinowski, Mario Fritz

As language and visual understanding by machines progresses rapidly, we are observing an increasing interest in holistic architectures that tightly interlink both modalities in a joint learning and inference process. This trend has allowed the community to progress towards more challenging and open tasks and refueled the hope at achieving the old AI dream of building machines that could pass a turing test in open domains. In order to steadily make progress towards this goal, we realize that quantifying performance becomes increasingly difficult. Therefore we ask how we can precisely define such challenges and how we can evaluate different algorithms on this open tasks? In this paper, we summarize and discuss such challenges as well as try to give answers where appropriate options are available in the literature. We exemplify some of the solutions on a recently presented dataset of question-answering task based on real-world indoor images that establishes a visual turing challenge. Finally, we argue despite the success of unique ground-truth annotation, we likely have to step away from carefully curated dataset and rather rely on 'social consensus' as the main driving force to create suitable benchmarks. Providing coverage in this inherently ambiguous output space is an emerging challenge that we face in order to make quantifiable progress in this area.

* Published in the NIPS 2014 Workshop on Learning Semantics 

  Click for Model/Code and Paper
A Pooling Approach to Modelling Spatial Relations for Image Retrieval and Annotation

May 05, 2015
Mateusz Malinowski, Mario Fritz

Over the last two decades we have witnessed strong progress on modeling visual object classes, scenes and attributes that have significantly contributed to automated image understanding. On the other hand, surprisingly little progress has been made on incorporating a spatial representation and reasoning in the inference process. In this work, we propose a pooling interpretation of spatial relations and show how it improves image retrieval and annotations tasks involving spatial language. Due to the complexity of the spatial language, we argue for a learning-based approach that acquires a representation of spatial relations by learning parameters of the pooling operator. We show improvements on previous work on two datasets and two different tasks as well as provide additional insights on a new dataset with an explicit focus on spatial relations.


  Click for Model/Code and Paper
A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input

May 05, 2015
Mateusz Malinowski, Mario Fritz

We propose a method for automatically answering questions about images by bringing together recent advances from natural language processing and computer vision. We combine discrete reasoning with uncertain predictions by a multi-world approach that represents uncertainty about the perceived world in a bayesian framework. Our approach can handle human questions of high complexity about realistic scenes and replies with range of answer like counts, object classes, instances and lists of them. The system is directly trained from question-answer pairs. We establish a first benchmark for this task that can be seen as a modern attempt at a visual turing test.

* Published in NIPS 2014 

  Click for Model/Code and Paper
Hard to Cheat: A Turing Test based on Answering Questions about Images

Jan 15, 2015
Mateusz Malinowski, Mario Fritz

Progress in language and image understanding by machines has sparkled the interest of the research community in more open-ended, holistic tasks, and refueled an old AI dream of building intelligent machines. We discuss a few prominent challenges that characterize such holistic tasks and argue for "question answering about images" as a particular appealing instance of such a holistic task. In particular, we point out that it is a version of a Turing Test that is likely to be more robust to over-interpretations and contrast it with tasks like grounding and generation of descriptions. Finally, we discuss tools to measure progress in this field.

* Presented in AAAI-15 Workshop: Beyond the Turing Test 

  Click for Model/Code and Paper
Learning dynamic polynomial proofs

Jun 04, 2019
Alhussein Fawzi, Mateusz Malinowski, Hamza Fawzi, Omar Fawzi

Polynomial inequalities lie at the heart of many mathematical disciplines. In this paper, we consider the fundamental computational task of automatically searching for proofs of polynomial inequalities. We adopt the framework of semi-algebraic proof systems that manipulate polynomial inequalities via elementary inference rules that infer new inequalities from the premises. These proof systems are known to be very powerful, but searching for proofs remains a major difficulty. In this work, we introduce a machine learning based method to search for a dynamic proof within these proof systems. We propose a deep reinforcement learning framework that learns an embedding of the polynomials and guides the choice of inference rules, taking the inherent symmetries of the problem as an inductive bias. We compare our approach with powerful and widely-studied linear programming hierarchies based on static proof systems, and show that our method reduces the size of the linear program by several orders of magnitude while also improving performance. These results hence pave the way towards augmenting powerful and well-studied semi-algebraic proof systems with machine learning guiding strategies for enhancing the expressivity of such proof systems.


  Click for Model/Code and Paper
Ask Your Neurons: A Deep Learning Approach to Visual Question Answering

Nov 24, 2016
Mateusz Malinowski, Marcus Rohrbach, Mario Fritz

We address a question answering task on real-world images that is set up as a Visual Turing Test. By combining latest advances in image representation and natural language processing, we propose Ask Your Neurons, a scalable, jointly trained, end-to-end formulation to this problem. In contrast to previous efforts, we are facing a multi-modal problem where the language output (answer) is conditioned on visual and natural language inputs (image and question). We provide additional insights into the problem by analyzing how much information is contained only in the language part for which we provide a new human baseline. To study human consensus, which is related to the ambiguities inherent in this challenging task, we propose two novel metrics and collect additional answers which extend the original DAQUAR dataset to DAQUAR-Consensus. Moreover, we also extend our analysis to VQA, a large-scale question answering about images dataset, where we investigate some particular design choices and show the importance of stronger visual models. At the same time, we achieve strong performance of our model that still uses a global image representation. Finally, based on such analysis, we refine our Ask Your Neurons on DAQUAR, which also leads to a better performance on this challenging task.

* Improved version, it also has a final table from the VQA challenge, and more baselines on DAQUAR 

  Click for Model/Code and Paper
Mean Box Pooling: A Rich Image Representation and Output Embedding for the Visual Madlibs Task

Aug 09, 2016
Ashkan Mokarian, Mateusz Malinowski, Mario Fritz

We present Mean Box Pooling, a novel visual representation that pools over CNN representations of a large number, highly overlapping object proposals. We show that such representation together with nCCA, a successful multimodal embedding technique, achieves state-of-the-art performance on the Visual Madlibs task. Moreover, inspired by the nCCA's objective function, we extend classical CNN+LSTM approach to train the network by directly maximizing the similarity between the internal representation of the deep learning architecture and candidate answers. Again, such approach achieves a significant improvement over the prior work that also uses CNN+LSTM approach on Visual Madlibs.

* Accepted to BMVC'16 

  Click for Model/Code and Paper
Spatio-Temporal Image Boundary Extrapolation

May 24, 2016
Apratim Bhattacharyya, Mateusz Malinowski, Mario Fritz

Boundary prediction in images as well as video has been a very active topic of research and organizing visual information into boundaries and segments is believed to be a corner stone of visual perception. While prior work has focused on predicting boundaries for observed frames, our work aims at predicting boundaries of future unobserved frames. This requires our model to learn about the fate of boundaries and extrapolate motion patterns. We experiment on established real-world video segmentation dataset, which provides a testbed for this new task. We show for the first time spatio-temporal boundary extrapolation in this challenging scenario. Furthermore, we show long-term prediction of boundaries in situations where the motion is governed by the laws of physics. We successfully predict boundaries in a billiard scenario without any assumptions of a strong parametric model or any object notion. We argue that our model has with minimalistic model assumptions derived a notion of 'intuitive physics' that can be applied to novel scenes.


  Click for Model/Code and Paper
Ask Your Neurons: A Neural-based Approach to Answering Questions about Images

Oct 01, 2015
Mateusz Malinowski, Marcus Rohrbach, Mario Fritz

We address a question answering task on real-world images that is set up as a Visual Turing Test. By combining latest advances in image representation and natural language processing, we propose Neural-Image-QA, an end-to-end formulation to this problem for which all parts are trained jointly. In contrast to previous efforts, we are facing a multi-modal problem where the language output (answer) is conditioned on visual and natural language input (image and question). Our approach Neural-Image-QA doubles the performance of the previous best approach on this problem. We provide additional insights into the problem by analyzing how much information is contained only in the language part for which we provide a new human baseline. To study human consensus, which is related to the ambiguities inherent in this challenging task, we propose two novel metrics and collect additional answers which extends the original DAQUAR dataset to DAQUAR-Consensus.

* ICCV'15 (Oral) 

  Click for Model/Code and Paper
Playing the Game of Universal Adversarial Perturbations

Sep 25, 2018
Julien Perolat, Mateusz Malinowski, Bilal Piot, Olivier Pietquin

We study the problem of learning classifiers robust to universal adversarial perturbations. While prior work approaches this problem via robust optimization, adversarial training, or input transformation, we instead phrase it as a two-player zero-sum game. In this new formulation, both players simultaneously play the same game, where one player chooses a classifier that minimizes a classification loss whilst the other player creates an adversarial perturbation that increases the same loss when applied to every sample in the training set. By observing that performing a classification (respectively creating adversarial samples) is the best response to the other player, we propose a novel extension of a game-theoretic algorithm, namely fictitious play, to the domain of training robust classifiers. Finally, we empirically show the robustness and versatility of our approach in two defence scenarios where universal attacks are performed on several image classification datasets -- CIFAR10, CIFAR100 and ImageNet.


  Click for Model/Code and Paper
Learning Visual Question Answering by Bootstrapping Hard Attention

Aug 01, 2018
Mateusz Malinowski, Carl Doersch, Adam Santoro, Peter Battaglia

Attention mechanisms in biological perception are thought to select subsets of perceptual information for more sophisticated processing which would be prohibitive to perform on all sensory inputs. In computer vision, however, there has been relatively little exploration of hard attention, where some information is selectively ignored, in spite of the success of soft attention, where information is re-weighted and aggregated, but never filtered out. Here, we introduce a new approach for hard attention and find it achieves very competitive performance on a recently-released visual question answering datasets, equalling and in some cases surpassing similar soft attention architectures while entirely ignoring some features. Even though the hard attention mechanism is thought to be non-differentiable, we found that the feature magnitudes correlate with semantic relevance, and provide a useful signal for our mechanism's attentional selection criterion. Because hard attention selects important features of the input information, it can also be more efficient than analogous soft attention mechanisms. This is especially important for recent approaches that use non-local pairwise operations, whereby computational and memory costs are quadratic in the size of the set of features.

* ECCV 2018 

  Click for Model/Code and Paper
Long-Term Image Boundary Prediction

Nov 23, 2017
Apratim Bhattacharyya, Mateusz Malinowski, Bernt Schiele, Mario Fritz

Boundary estimation in images and videos has been a very active topic of research, and organizing visual information into boundaries and segments is believed to be a corner stone of visual perception. While prior work has focused on estimating boundaries for observed frames, our work aims at predicting boundaries of future unobserved frames. This requires our model to learn about the fate of boundaries and corresponding motion patterns -- including a notion of "intuitive physics". We experiment on natural video sequences along with synthetic sequences with deterministic physics-based and agent-based motions. While not being our primary goal, we also show that fusion of RGB and boundary prediction leads to improved RGB predictions.

* Accepted in the AAAI Conference for Artificial Intelligence, 2018 

  Click for Model/Code and Paper
Multi-Cue Zero-Shot Learning with Strong Supervision

Mar 29, 2016
Zeynep Akata, Mateusz Malinowski, Mario Fritz, Bernt Schiele

Scaling up visual category recognition to large numbers of classes remains challenging. A promising research direction is zero-shot learning, which does not require any training data to recognize new classes, but rather relies on some form of auxiliary information describing the new classes. Ultimately, this may allow to use textbook knowledge that humans employ to learn about new classes by transferring knowledge from classes they know well. The most successful zero-shot learning approaches currently require a particular type of auxiliary information -- namely attribute annotations performed by humans -- that is not readily available for most classes. Our goal is to circumvent this bottleneck by substituting such annotations by extracting multiple pieces of information from multiple unstructured text sources readily available on the web. To compensate for the weaker form of auxiliary information, we incorporate stronger supervision in the form of semantic part annotations on the classes from which we transfer knowledge. We achieve our goal by a joint embedding framework that maps multiple text parts as well as multiple semantic parts into a common space. Our results consistently and significantly improve on the state-of-the-art in zero-short recognition and retrieval.

* 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 

  Click for Model/Code and Paper
Contextual Media Retrieval Using Natural Language Queries

Feb 16, 2016
Sreyasi Nag Chowdhury, Mateusz Malinowski, Andreas Bulling, Mario Fritz

The widespread integration of cameras in hand-held and head-worn devices as well as the ability to share content online enables a large and diverse visual capture of the world that millions of users build up collectively every day. We envision these images as well as associated meta information, such as GPS coordinates and timestamps, to form a collective visual memory that can be queried while automatically taking the ever-changing context of mobile users into account. As a first step towards this vision, in this work we present Xplore-M-Ego: a novel media retrieval system that allows users to query a dynamic database of images and videos using spatio-temporal natural language queries. We evaluate our system using a new dataset of real user queries as well as through a usability study. One key finding is that there is a considerable amount of inter-user variability, for example in the resolution of spatial relations in natural language utterances. We show that our retrieval system can cope with this variability using personalisation through an online learning-based retrieval formulation.

* 8 pages, 9 figures, 1 table 

  Click for Model/Code and Paper
Generating Diverse Programs with Instruction Conditioned Reinforced Adversarial Learning

Dec 03, 2018
Aishwarya Agrawal, Mateusz Malinowski, Felix Hill, Ali Eslami, Oriol Vinyals, Tejas Kulkarni

Advances in Deep Reinforcement Learning have led to agents that perform well across a variety of sensory-motor domains. In this work, we study the setting in which an agent must learn to generate programs for diverse scenes conditioned on a given symbolic instruction. Final goals are specified to our agent via images of the scenes. A symbolic instruction consistent with the goal images is used as the conditioning input for our policies. Since a single instruction corresponds to a diverse set of different but still consistent end-goal images, the agent needs to learn to generate a distribution over programs given an instruction. We demonstrate that with simple changes to the reinforced adversarial learning objective, we can learn instruction conditioned policies to achieve the corresponding diverse set of goals. Most importantly, our agent's stochastic policy is shown to more accurately capture the diversity in the goal distribution than a fixed pixel-based reward function baseline. We demonstrate the efficacy of our approach on two domains: (1) drawing MNIST digits with a paint software conditioned on instructions and (2) constructing scenes in a 3D editor that satisfies a certain instruction.


  Click for Model/Code and Paper
Learning To Follow Directions in Street View

Mar 01, 2019
Karl Moritz Hermann, Mateusz Malinowski, Piotr Mirowski, Andras Banki-Horvath, Keith Anderson, Raia Hadsell

Navigating and understanding the real world remains a key challenge in machine learning and inspires a great variety of research in areas such as language grounding, planning, navigation and computer vision. We propose an instruction-following task that requires all of the above, and which combines the practicality of simulated environments with the challenges of ambiguous, noisy real world data. StreetNav is built on top of Google Street View and provides visually accurate environments representing real places. Agents are given driving instructions which they must learn to interpret in order to successfully navigate in this environment. Since humans equipped with driving instructions can readily navigate in previously unseen cities, we set a high bar and test our trained agents for similar cognitive capabilities. Although deep reinforcement learning (RL) methods are frequently evaluated only on data that closely follow the training distribution, our dataset extends to multiple cities and has a clean train/test separation. This allows for thorough testing of generalisation ability. This paper presents the StreetNav environment and tasks, a set of novel models that establish strong baselines, and analysis of the task and the trained agents.


  Click for Model/Code and Paper
A simple neural network module for relational reasoning

Jun 05, 2017
Adam Santoro, David Raposo, David G. T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Timothy Lillicrap

Relational reasoning is a central component of generally intelligent behavior, but has proven difficult for neural networks to learn. In this paper we describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning. We tested RN-augmented networks on three tasks: visual question answering using a challenging dataset called CLEVR, on which we achieve state-of-the-art, super-human performance; text-based question answering using the bAbI suite of tasks; and complex reasoning about dynamic physical systems. Then, using a curated dataset called Sort-of-CLEVR we show that powerful convolutional networks do not have a general capacity to solve relational questions, but can gain this capacity when augmented with RNs. Our work shows how a deep learning architecture equipped with an RN module can implicitly discover and learn to reason about entities and their relations.


  Click for Model/Code and Paper