Research papers and code for "Meng Tian":
Generative adversarial models are powerful tools to model structure in complex distributions for a variety of tasks. Current techniques for learning generative models require an access to samples which have high quality, and advanced generative models are applied to generate samples from noisy training data through ambient modules. However, the modules are only practical for the output space of the generator, and their application in the hidden space is not well studied. In this paper, we extend the ambient module to the hidden space of the generator, and provide the uniqueness condition and the corresponding strategy for the ambient hidden generator in the adversarial training process. We report the practicality of the proposed method on the benchmark dataset.

* Uncertainty in Deep Learning Workshop at Uncertainty in Artificial Intelligence (UAI) 2018
* Accepted for publication in Uncertainty in Deep Learning Workshop at Uncertainty in Artificial Intelligence (UAI) 2018
Click to Read Paper and Get Code
It has been demonstrated that deep neural networks are prone to noisy examples particular adversarial samples during inference process. The gap between robust deep learning systems in real world applications and vulnerable neural networks is still large. Current adversarial training strategies improve the robustness against adversarial samples. However, these methods lead to accuracy reduction when the input examples are clean thus hinders the practicability. In this paper, we investigate an approach that protects the neural network classification from the adversarial samples and improves its accuracy when the input examples are clean. We demonstrate the versatility and effectiveness of our proposed approach on a variety of different networks and datasets.

* Accepted for publication in Uncertainty in Deep Learning Workshop at Uncertainty in Artificial Intelligence (UAI) 2018
Click to Read Paper and Get Code
During a long period of time we are combating over-fitting in the CNN training process with model regularization, including weight decay, model averaging, data augmentation, etc. In this paper, we present DisturbLabel, an extremely simple algorithm which randomly replaces a part of labels as incorrect values in each iteration. Although it seems weird to intentionally generate incorrect training labels, we show that DisturbLabel prevents the network training from over-fitting by implicitly averaging over exponentially many networks which are trained with different label sets. To the best of our knowledge, DisturbLabel serves as the first work which adds noises on the loss layer. Meanwhile, DisturbLabel cooperates well with Dropout to provide complementary regularization functions. Experiments demonstrate competitive recognition results on several popular image recognition datasets.

* To appear in CVPR 2016 (10 pages, 10 figures)
Click to Read Paper and Get Code
Recently, the online car-hailing service, Didi, has emerged as a leader in the sharing economy. Used by passengers and drivers extensive, it becomes increasingly important for the car-hailing service providers to minimize the waiting time of passengers and optimize the vehicle utilization, thus to improve the overall user experience. Therefore, the supply-demand estimation is an indispensable ingredient of an efficient online car-hailing service. To improve the accuracy of the estimation results, we analyze the implicit relationships between the points of Interest (POI) and the supply-demand gap in this paper. The different categories of POIs have positive or negative effects on the estimation, we propose a POI selection scheme and incorporate it into XGBoost [1] to achieve more accurate estimation results. Our experiment demonstrates our method provides more accurate estimation results and more stable estimation results than the existing methods.

Click to Read Paper and Get Code
Despite the promising progress made in recent years, person re-identification (re-ID) remains a challenging task due to the complex variations in human appearances from different camera views. For this challenging problem, a large variety of algorithms have been developed in the fully-supervised setting, requiring access to a large amount of labeled training data. However, the main bottleneck for fully-supervised re-ID is the limited availability of labeled training samples. To address this problem, in this paper, we propose a self-trained subspace learning paradigm for person re-ID which effectively utilizes both labeled and unlabeled data to learn a discriminative subspace where person images across disjoint camera views can be easily matched. The proposed approach first constructs pseudo pairwise relationships among unlabeled persons using the k-nearest neighbors algorithm. Then, with the pseudo pairwise relationships, the unlabeled samples can be easily combined with the labeled samples to learn a discriminative projection by solving an eigenvalue problem. In addition, we refine the pseudo pairwise relationships iteratively, which further improves the learning performance. A multi-kernel embedding strategy is also incorporated into the proposed approach to cope with the non-linearity in person's appearance and explore the complementation of multiple kernels. In this way, the performance of person re-ID can be greatly enhanced when training data are insufficient. Experimental results on six widely-used datasets demonstrate the effectiveness of our approach and its performance can be comparable to the reported results of most state-of-the-art fully-supervised methods while using much fewer labeled data.

* Accepted by ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)
Click to Read Paper and Get Code
Constructing a smart wheelchair on a commercially available powered wheelchair (PWC) platform avoids a host of seating, mechanical design and reliability issues but requires methods of predicting and controlling the motion of a device never intended for robotics. Analog joystick inputs are subject to black-box transformations which may produce intuitive and adaptable motion control for human operators, but complicate robotic control approaches; furthermore, installation of standard axle mounted odometers on a commercial PWC is difficult. In this work, we present an integrated hardware and software system for predicting the motion of a commercial PWC platform that does not require any physical or electronic modification of the chair beyond plugging into an industry standard auxiliary input port. This system uses an RGB-D camera and an Arduino interface board to capture motion data, including visual odometry and joystick signals, via ROS communication. Future motion is predicted using an autoregressive sparse Gaussian process model. We evaluate the proposed system on real-world short-term path prediction experiments. Experimental results demonstrate the system's efficacy when compared to a baseline neural network model.

* The paper has been accepted to the International Conference on Robotics and Automation (ICRA2018)
Click to Read Paper and Get Code
Intelligent Input Methods (IM) are essential for making text entries in many East Asian scripts, but their application to other languages has not been fully explored. This paper discusses how such tools can contribute to the development of computer processing of other oriental languages. We propose a design philosophy that regards IM as a text service platform, and treats the study of IM as a cross disciplinary subject from the perspectives of software engineering, human-computer interaction (HCI), and natural language processing (NLP). We discuss these three perspectives and indicate a number of possible future research directions.

* 10 pages
Click to Read Paper and Get Code
Automatic clinical diagnosis of retinal diseases has emerged as a promising approach to facilitate discovery in areas with limited access to specialists. Based on the fact that fundus structure and vascular disorders are the main characteristics of retinal diseases, we propose a novel visual-assisted diagnosis hybrid model mixing the support vector machine (SVM) and deep neural networks (DNNs). Furthermore, we present a new clinical retina dataset, called EyeNet2, for ophthalmology incorporating 52 retina diseases classes. Using EyeNet2, our model achieves 90.43\% diagnosis accuracy, and the model performance is comparable to the professional ophthalmologists.

* Asian Conference on Computer Vision (ACCV), Artificial Intelligence for Retinal Image Analysis Workshop, December 2-6, 2018
* A extension work of a workshop paper arXiv admin note: substantial text overlap with arXiv:1806.06423
Click to Read Paper and Get Code
Age-Related Macular Degeneration (AMD) is an asymptomatic retinal disease which may result in loss of vision. There is limited access to high-quality relevant retinal images and poor understanding of the features defining sub-classes of this disease. Motivated by recent advances in machine learning we specifically explore the potential of generative modeling, using Generative Adversarial Networks (GANs) and style transferring, to facilitate clinical diagnosis and disease understanding by feature extraction. We design an analytic pipeline which first generates synthetic retinal images from clinical images; a subsequent verification step is applied. In the synthesizing step we merge GANs (DCGANs and WGANs architectures) and style transferring for the image generation, whereas the verified step controls the accuracy of the generated images. We find that the generated images contain sufficient pathological details to facilitate ophthalmologists' task of disease classification and in discovery of disease relevant features. In particular, our system predicts the drusen and geographic atrophy sub-classes of AMD. Furthermore, the performance using CFP images for GANs outperforms the classification based on using only the original clinical dataset. Our results are evaluated using existing classifier of retinal diseases and class activated maps, supporting the predictive power of the synthetic images and their utility for feature extraction. Our code examples are available online.

* AI for Retinal Image Analysis Workshop ACCV 2018
Click to Read Paper and Get Code
Social norms are shared rules that govern and facilitate social interaction. Violating such social norms via teasing and insults may serve to upend power imbalances or, on the contrary reinforce solidarity and rapport in conversation, rapport which is highly situated and context-dependent. In this work, we investigate the task of automatically identifying the phenomena of social norm violation in discourse. Towards this goal, we leverage the power of recurrent neural networks and multimodal information present in the interaction, and propose a predictive model to recognize social norm violation. Using long-term temporal and contextual information, our model achieves an F1 score of 0.705. Implications of our work regarding developing a social-aware agent are discussed.

* Submitted to NIPS Workshop. arXiv admin note: text overlap with arXiv:1608.02977 by other authors
Click to Read Paper and Get Code
In this study, an efficient stochastic gradient-free method, the ensemble neural networks (ENN), is developed. In the ENN, the optimization process relies on covariance matrices rather than derivatives. The covariance matrices are calculated by the ensemble randomized maximum likelihood algorithm (EnRML), which is an inverse modeling method. The ENN is able to simultaneously provide estimations and perform uncertainty quantification since it is built under the Bayesian framework. The ENN is also robust to small training data size because the ensemble of stochastic realizations essentially enlarges the training dataset. This constitutes a desirable characteristic, especially for real-world engineering applications. In addition, the ENN does not require the calculation of gradients, which enables the use of complicated neuron models and loss functions in neural networks. We experimentally demonstrate benefits of the proposed model, in particular showing that the ENN performs much better than the traditional Bayesian neural networks (BNN). The EnRML in ENN is a substitution of gradient-based optimization algorithms, which means that it can be directly combined with the feed-forward process in other existing (deep) neural networks, such as convolutional neural networks (CNN) and recurrent neural networks (RNN), broadening future applications of the ENN.

* Neural Networks, 110, 170-185 (2019)
Click to Read Paper and Get Code
Person re-identification (Re-ID) poses a unique challenge to deep learning: how to learn a deep model with millions of parameters on a small training set of few or no labels. In this paper, a number of deep transfer learning models are proposed to address the data sparsity problem. First, a deep network architecture is designed which differs from existing deep Re-ID models in that (a) it is more suitable for transferring representations learned from large image classification datasets, and (b) classification loss and verification loss are combined, each of which adopts a different dropout strategy. Second, a two-stepped fine-tuning strategy is developed to transfer knowledge from auxiliary datasets. Third, given an unlabelled Re-ID dataset, a novel unsupervised deep transfer learning model is developed based on co-training. The proposed models outperform the state-of-the-art deep Re-ID models by large margins: we achieve Rank-1 accuracy of 85.4\%, 83.7\% and 56.3\% on CUHK03, Market1501, and VIPeR respectively, whilst on VIPeR, our unsupervised model (45.1\%) beats most supervised models.

* 12 pages, 2 figures
Click to Read Paper and Get Code
To obtain suitable feature distribution is a difficult task in machine learning, especially for unsupervised learning. In this paper, we propose a novel self-learning local supervision encoding framework based on RBMs, in which the self-learning local supervisions from visible layer are integrated into the contrastive divergence (CD) learning of RBMs to constrict and disperse the distribution of the hidden layer features for clustering tasks. In the framework, we use sigmoid transformation to obtain hidden layer and reconstructed hidden layer features from visible layer and reconstructed visible layer units during sampling procedure. The self-learning local supervisions contain local credible clusters which stem from different unsupervised learning and unanimous voting strategy. They are fused into hidden layer features and reconstructed hidden layer features. For the same local clusters, the hidden features and reconstructed hidden layer features of the framework tend to constrict together. Furthermore, the hidden layer features of different local clusters tend to disperse in the encoding process. Under such framework, we present two instantiation models with the reconstruction of two different visible layers. One is self-learning local supervision GRBM (slsGRBM) model with Gaussian linear visible units and binary hidden units using linear transformation for visible layer reconstruction. The other is self-learning local supervision RBM (slsRBM) model with binary visible and hidden units using sigmoid transformation for visible layer reconstruction.

Click to Read Paper and Get Code
Though deep neural network has hit a huge success in recent studies and applica- tions, it still remains vulnerable to adversarial perturbations which are imperceptible to humans. To address this problem, we propose a novel network called ReabsNet to achieve high classification accuracy in the face of various attacks. The approach is to augment an existing classification network with a guardian network to detect if a sample is natural or has been adversarially perturbed. Critically, instead of simply rejecting adversarial examples, we revise them to get their true labels. We exploit the observation that a sample containing adversarial perturbations has a possibility of returning to its true class after revision. We demonstrate that our ReabsNet outperforms the state-of-the-art defense method under various adversarial attacks.

Click to Read Paper and Get Code
Restricted Boltzmann machines (RBMs) and their variants are usually trained by contrastive divergence (CD) learning, but the training procedure is an unsupervised learning approach, without any guidances of the background knowledge. To enhance the expression ability of traditional RBMs, in this paper, we propose pairwise constraints restricted Boltzmann machine with Gaussian visible units (pcGRBM) model, in which the learning procedure is guided by pairwise constraints and the process of encoding is conducted under these guidances. The pairwise constraints are encoded in hidden layer features of pcGRBM. Then, some pairwise hidden features of pcGRBM flock together and another part of them are separated by the guidances. In order to deal with real-valued data, the binary visible units are replaced by linear units with Gausian noise in the pcGRBM model. In the learning process of pcGRBM, the pairwise constraints are iterated transitions between visible and hidden units during CD learning procedure. Then, the proposed model is inferred by approximative gradient descent method and the corresponding learning algorithm is designed in this paper. In order to compare the availability of pcGRBM and traditional RBMs with Gaussian visible units, the features of the pcGRBM and RBMs hidden layer are used as input 'data' for K-means, spectral clustering (SP) and affinity propagation (AP) algorithms, respectively. A thorough experimental evaluation is performed with sixteen image datasets of Microsoft Research Asia Multimedia (MSRA-MM). The experimental results show that the clustering performance of K-means, SP and AP algorithms based on pcGRBM model are significantly better than traditional RBMs. In addition, the pcGRBM model for clustering task shows better performance than some semi-supervised clustering algorithms.

* 13pages
Click to Read Paper and Get Code
In the artificial intelligence area, one of the ultimate goals is to make computers understand human language and offer assistance. In order to achieve this ideal, researchers of computer science have put forward a lot of models and algorithms attempting at enabling the machine to analyze and process human natural language on different levels of semantics. Although recent progress in this field offers much hope, we still have to ask whether current research can provide assistance that people really desire in reading and comprehension. To this end, we conducted a reading comprehension test on two scientific papers which are written in different styles. We use the semantic link models to analyze the understanding obstacles that people will face in the process of reading and figure out what makes it difficult for human to understand a scientific literature. Through such analysis, we summarized some characteristics and problems which are reflected by people with different levels of knowledge on the comprehension of difficult science and technology literature, which can be modeled in semantic link network. We believe that these characteristics and problems will help us re-examine the existing machine models and are helpful in the designing of new one.

* Accepted by SKG2015
Click to Read Paper and Get Code
As an important research topic in computer vision, fine-grained classification which aims to recognition subordinate-level categories has attracted significant attention. We propose a novel region based ensemble learning network for fine-grained classification. Our approach contains a detection module and a module for classification. The detection module is based on the faster R-CNN framework to locate the semantic regions of the object. The classification module using an ensemble learning method, which trains a set of sub-classifiers for different semantic regions and combines them together to get a stronger classifier. In the evaluation, we implement experiments on the CUB-2011 dataset and the result of experiments proves our method s efficient for fine-grained classification. We also extend our approach to remote scene recognition and evaluate it on the NWPU-RESISC45 dataset.

* 6 pages, 3 figures, 2018 Chinese Automation Congress (CAC)
Click to Read Paper and Get Code
Discriminative Correlation Filters (DCF) are efficient in visual tracking but suffer from unwanted boundary effects. Spatially Regularized DCF (SRDCF) has been suggested to resolve this issue by enforcing spatial penalty on DCF coefficients, which, inevitably, improves the tracking performance at the price of increasing complexity. To tackle online updating, SRDCF formulates its model on multiple training images, further adding difficulties in improving efficiency. In this work, by introducing temporal regularization to SRDCF with single sample, we present our spatial-temporal regularized correlation filters (STRCF). Motivated by online Passive-Agressive (PA) algorithm, we introduce the temporal regularization to SRDCF with single sample, thus resulting in our spatial-temporal regularized correlation filters (STRCF). The STRCF formulation can not only serve as a reasonable approximation to SRDCF with multiple training samples, but also provide a more robust appearance model than SRDCF in the case of large appearance variations. Besides, it can be efficiently solved via the alternating direction method of multipliers (ADMM). By incorporating both temporal and spatial regularization, our STRCF can handle boundary effects without much loss in efficiency and achieve superior performance over SRDCF in terms of accuracy and speed. Experiments are conducted on three benchmark datasets: OTB-2015, Temple-Color, and VOT-2016. Compared with SRDCF, STRCF with hand-crafted features provides a 5 times speedup and achieves a gain of 5.4% and 3.6% AUC score on OTB-2015 and Temple-Color, respectively. Moreover, STRCF combined with CNN features also performs favorably against state-of-the-art CNN-based trackers and achieves an AUC score of 68.3% on OTB-2015.

* Accepted at CVPR 2018
Click to Read Paper and Get Code
Conditions are essential in the statements of biological literature. Without the conditions (e.g., environment, equipment) that were precisely specified, the facts (e.g., observations) in the statements may no longer be valid. One biological statement has one or multiple fact(s) and/or condition(s). Their subject and object can be either a concept or a concept's attribute. Existing information extraction methods do not consider the role of condition in the biological statement nor the role of attribute in the subject/object. In this work, we design a new tag schema and propose a deep sequence tagging framework to structure conditional statement into fact and condition tuples from biological text. Experiments demonstrate that our method yields a information-lossless structure of the literature.

Click to Read Paper and Get Code
Recently, autonomous driving development ignited competition among car makers and technical corporations. Low-level automation cars are already commercially available. But high automated vehicles where the vehicle drives by itself without human monitoring is still at infancy. Such autonomous vehicles (AVs) rely on the computing system in the car to to interpret the environment and make driving decisions. Therefore, computing system design is essential particularly in enhancing the attainment of driving safety. However, to our knowledge, no clear guideline exists so far regarding safety-aware AV computing system and architecture design. To understand the safety requirement of AV computing system, we performed a field study by running industrial Level-4 autonomous driving fleets in various locations, road conditions, and traffic patterns. The field study indicates that traditional computing system performance metrics, such as tail latency, average latency, maximum latency, and timeout, cannot fully satisfy the safety requirement for AV computing system design. To address this issue, we propose a `safety score' as a primary metric for measuring the level of safety in AV computing system design. Furthermore, we propose a perception latency model, which helps architects estimate the safety score of given architecture and system design without physically testing them in an AV. We demonstrate the use of our safety score and latency model, by developing and evaluating a safety-aware AV computing system computation hardware resource management scheme.

Click to Read Paper and Get Code