Models, code, and papers for "Michael Blumenstein":

A Study on Writer Identification and Verification from Intra-variable Individual Handwriting

Sep 06, 2018
Chandranath Adak, Bidyut B. Chaudhuri, Michael Blumenstein

The handwriting of an individual may vary substantially with factors such as mood, time, space, writing speed, writing medium and tool, writing topic, etc. It becomes challenging to perform automated writer verification/identification on a particular set of handwritten patterns (e.g., speedy handwriting) of a person, especially when the system is trained using a different set of writing patterns (e.g., normal speed) of that same person. However, it would be interesting to experimentally analyze if there exists any implicit characteristic of individuality which is insensitive to high intra-variable handwriting. In this paper, we study some handcrafted features and auto-derived features extracted from intra-variable writing. Here, we work on writer identification/verification from offline Bengali handwriting of high intra-variability. To this end, we use various models mainly based on handcrafted features with SVM (Support Vector Machine) and features auto-derived by the convolutional network. For experimentation, we have generated two handwritten databases from two different sets of 100 writers and enlarged the dataset by a data-augmentation technique. We have obtained some interesting results.

  Click for Model/Code and Paper
Bag-of-Visual-Words for Signature-Based Multi-Script Document Retrieval

Jul 18, 2018
Ranju Mandal, Partha Pratim Roy, Umapada Pal, Michael Blumenstein

An end-to-end architecture for multi-script document retrieval using handwritten signatures is proposed in this paper. The user supplies a query signature sample and the system exclusively returns a set of documents that contain the query signature. In the first stage, a component-wise classification technique separates the potential signature components from all other components. A bag-of-visual-words powered by SIFT descriptors in a patch-based framework is proposed to compute the features and a Support Vector Machine (SVM)-based classifier was used to separate signatures from the documents. In the second stage, features from the foreground (i.e. signature strokes) and the background spatial information (i.e. background loops, reservoirs etc.) were combined to characterize the signature object to match with the query signature. Finally, three distance measures were used to match a query signature with the signature present in target documents for retrieval. The `Tobacco' document database and an Indian script database containing 560 documents of Devanagari (Hindi) and Bangla scripts were used for the performance evaluation. The proposed system was also tested on noisy documents and promising results were obtained. A comparative study shows that the proposed method outperforms the state-of-the-art approaches.

  Click for Model/Code and Paper
FACLSTM: ConvLSTM with Focused Attention for Scene Text Recognition

Apr 20, 2019
Qingqing Wang, Wenjing Jia, Xiangjian He, Yue Lu, Michael Blumenstein, Ye Huang

Scene text recognition has recently been widely treated as a sequence-to-sequence prediction problem, where traditional fully-connected-LSTM (FC-LSTM) has played a critical role. Due to the limitation of FC-LSTM, existing methods have to convert 2-D feature maps into 1-D sequential feature vectors, resulting in severe damages of the valuable spatial and structural information of text images. In this paper, we argue that scene text recognition is essentially a spatiotemporal prediction problem for its 2-D image inputs, and propose a convolution LSTM (ConvLSTM)-based scene text recognizer, namely, FACLSTM, i.e., Focused Attention ConvLSTM, where the spatial correlation of pixels is fully leveraged when performing sequential prediction with LSTM. Particularly, the attention mechanism is properly incorporated into an efficient ConvLSTM structure via the convolutional operations and additional character center masks are generated to help focus attention on right feature areas. The experimental results on benchmark datasets IIIT5K, SVT and CUTE demonstrate that our proposed FACLSTM performs competitively on the regular, low-resolution and noisy text images, and outperforms the state-of-the-art approaches on the curved text with large margins.

* 9 pages 

  Click for Model/Code and Paper
Temporal Self-Attention Network for Medical Concept Embedding

Sep 15, 2019
Xueping Peng, Guodong Long, Tao Shen, Sen Wang, Jing Jiang, Michael Blumenstein

In longitudinal electronic health records (EHRs), the event records of a patient are distributed over a long period of time and the temporal relations between the events reflect sufficient domain knowledge to benefit prediction tasks such as the rate of inpatient mortality. Medical concept embedding as a feature extraction method that transforms a set of medical concepts with a specific time stamp into a vector, which will be fed into a supervised learning algorithm. The quality of the embedding significantly determines the learning performance over the medical data. In this paper, we propose a medical concept embedding method based on applying a self-attention mechanism to represent each medical concept. We propose a novel attention mechanism which captures the contextual information and temporal relationships between medical concepts. A light-weight neural net, "Temporal Self-Attention Network (TeSAN)", is then proposed to learn medical concept embedding based solely on the proposed attention mechanism. To test the effectiveness of our proposed methods, we have conducted clustering and prediction tasks on two public EHRs datasets comparing TeSAN against five state-of-the-art embedding methods. The experimental results demonstrate that the proposed TeSAN model is superior to all the compared methods. To the best of our knowledge, this work is the first to exploit temporal self-attentive relations between medical events.

* 10 pages, 7 figures, accepted at IEEE ICDM 2019 

  Click for Model/Code and Paper