Models, code, and papers for "Michela Paganini":

Machine Learning Solutions for High Energy Physics: Applications to Electromagnetic Shower Generation, Flavor Tagging, and the Search for di-Higgs Production

Mar 12, 2019
Michela Paganini

This thesis demonstrate the efficacy of designing and developing machine learning (ML) algorithms to selected use cases that encompass many of the outstanding challenges in the field of experimental high energy physics. Although simple implementations of neural networks and boosted decision trees have been used in high energy physics for a long time, the field of ML has quickly evolved by devising more complex, fast and stable implementations of learning algorithms. The complexity and power of state-of-the-art deep learning far exceeds those of the learning algorithms implemented in the CERN-developed \texttt{ROOT} library. All aspects of experimental high energy physics have been and will continue being revolutionized by the software- and hardware-based technological advances spearheaded by both academic and industrial research in other technical disciplines, and the emergent trend of increased interdisciplinarity will soon reframe many scientific domains. This thesis exemplifies this spirit of versatility and multidisciplinarity by bridging the gap between ML and particle physics, and exploring original lines of work to modernize the reconstruction, particle identification, simulation, and analysis workflows. This contribution documents a collection of novel approaches to augment traditional domain-specific methods with modern, automated techniques based on industry-standard, open-source libraries. Specifically, it contributes to setting the state-of-the-art for impact parameter-based flavor tagging and di-Higgs searches in the $\gamma \gamma b\bar{b} $ channel with the ATLAS detector at the LHC, it introduces and lays the foundations for the use of generative adversarial networks for the simulation of particle showers in calorimeters. These results substantiate the notion of ML powering particle physics in the upcoming years and establish baselines for future applications.

* 413 pages, 10 chapters 

  Click for Model/Code and Paper
Machine Learning Algorithms for $b$-Jet Tagging at the ATLAS Experiment

Nov 23, 2017
Michela Paganini

The separation of $b$-quark initiated jets from those coming from lighter quark flavors ($b$-tagging) is a fundamental tool for the ATLAS physics program at the CERN Large Hadron Collider. The most powerful $b$-tagging algorithms combine information from low-level taggers, exploiting reconstructed track and vertex information, into machine learning classifiers. The potential of modern deep learning techniques is explored using simulated events, and compared to that achievable from more traditional classifiers such as boosted decision trees.

* 7 pages, 5 figures, in proceedings of the 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2017) 

  Click for Model/Code and Paper
The Scientific Method in the Science of Machine Learning

Apr 24, 2019
Jessica Zosa Forde, Michela Paganini

In the quest to align deep learning with the sciences to address calls for rigor, safety, and interpretability in machine learning systems, this contribution identifies key missing pieces: the stages of hypothesis formulation and testing, as well as statistical and systematic uncertainty estimation -- core tenets of the scientific method. This position paper discusses the ways in which contemporary science is conducted in other domains and identifies potentially useful practices. We present a case study from physics and describe how this field has promoted rigor through specific methodological practices, and provide recommendations on how machine learning researchers can adopt these practices into the research ecosystem. We argue that both domain-driven experiments and application-agnostic questions of the inner workings of fundamental building blocks of machine learning models ought to be examined with the tools of the scientific method, to ensure we not only understand effect, but also begin to understand cause, which is the raison d'\^{e}tre of science.

* 4 pages + 1 appendix. Presented at the ICLR 2019 Debugging Machine Learning Models workshop 

  Click for Model/Code and Paper
CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks

Dec 21, 2017
Michela Paganini, Luke de Oliveira, Benjamin Nachman

The precise modeling of subatomic particle interactions and propagation through matter is paramount for the advancement of nuclear and particle physics searches and precision measurements. The most computationally expensive step in the simulation pipeline of a typical experiment at the Large Hadron Collider (LHC) is the detailed modeling of the full complexity of physics processes that govern the motion and evolution of particle showers inside calorimeters. We introduce \textsc{CaloGAN}, a new fast simulation technique based on generative adversarial networks (GANs). We apply these neural networks to the modeling of electromagnetic showers in a longitudinally segmented calorimeter, and achieve speedup factors comparable to or better than existing full simulation techniques on CPU ($100\times$-$1000\times$) and even faster on GPU (up to $\sim10^5\times$). There are still challenges for achieving precision across the entire phase space, but our solution can reproduce a variety of geometric shower shape properties of photons, positrons and charged pions. This represents a significant stepping stone toward a full neural network-based detector simulation that could save significant computing time and enable many analyses now and in the future.

* Phys. Rev. D 97, 014021 (2018) 
* 14 pages, 4 tables, 13 figures; version accepted by Physical Review D (PRD) 

  Click for Model/Code and Paper
Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multi-Layer Calorimeters

Dec 21, 2017
Michela Paganini, Luke de Oliveira, Benjamin Nachman

Physicists at the Large Hadron Collider (LHC) rely on detailed simulations of particle collisions to build expectations of what experimental data may look like under different theory modeling assumptions. Petabytes of simulated data are needed to develop analysis techniques, though they are expensive to generate using existing algorithms and computing resources. The modeling of detectors and the precise description of particle cascades as they interact with the material in the calorimeter are the most computationally demanding steps in the simulation pipeline. We therefore introduce a deep neural network-based generative model to enable high-fidelity, fast, electromagnetic calorimeter simulation. There are still challenges for achieving precision across the entire phase space, but our current solution can reproduce a variety of particle shower properties while achieving speed-up factors of up to 100,000$\times$. This opens the door to a new era of fast simulation that could save significant computing time and disk space, while extending the reach of physics searches and precision measurements at the LHC and beyond.

* Phys. Rev. Lett. 120, 042003 (2018) 
* 6 pages, 3 figures; version accepted by Physical Review Letters (PRL) 

  Click for Model/Code and Paper
Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters

Nov 23, 2017
Luke de Oliveira, Michela Paganini, Benjamin Nachman

High-precision modeling of subatomic particle interactions is critical for many fields within the physical sciences, such as nuclear physics and high energy particle physics. Most simulation pipelines in the sciences are computationally intensive -- in a variety of scientific fields, Generative Adversarial Networks have been suggested as a solution to speed up the forward component of simulation, with promising results. An important component of any simulation system for the sciences is the ability to condition on any number of physically meaningful latent characteristics that can effect the forward generation procedure. We introduce an auxiliary task to the training of a Generative Adversarial Network on particle showers in a multi-layer electromagnetic calorimeter, which allows our model to learn an attribute-aware conditioning mechanism.

* 7 pages, 5 figures, in proceedings of the 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2017) 

  Click for Model/Code and Paper
Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis

Jun 13, 2017
Luke de Oliveira, Michela Paganini, Benjamin Nachman

We provide a bridge between generative modeling in the Machine Learning community and simulated physical processes in High Energy Particle Physics by applying a novel Generative Adversarial Network (GAN) architecture to the production of jet images -- 2D representations of energy depositions from particles interacting with a calorimeter. We propose a simple architecture, the Location-Aware Generative Adversarial Network, that learns to produce realistic radiation patterns from simulated high energy particle collisions. The pixel intensities of GAN-generated images faithfully span over many orders of magnitude and exhibit the desired low-dimensional physical properties (i.e., jet mass, n-subjettiness, etc.). We shed light on limitations, and provide a novel empirical validation of image quality and validity of GAN-produced simulations of the natural world. This work provides a base for further explorations of GANs for use in faster simulation in High Energy Particle Physics.

* Comput Softw Big Sci (2017) 1: 4 
* 23 pages, 23 figures, 1 table, and appendix; Added new validation metric, acknowledgements, minor corrections 

  Click for Model/Code and Paper
One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers

Jun 06, 2019
Ari S. Morcos, Haonan Yu, Michela Paganini, Yuandong Tian

The success of lottery ticket initializations (Frankle and Carbin, 2019) suggests that small, sparsified networks can be trained so long as the network is initialized appropriately. Unfortunately, finding these "winning ticket" initializations is computationally expensive. One potential solution is to reuse the same winning tickets across a variety of datasets and optimizers. However, the generality of winning ticket initializations remains unclear. Here, we attempt to answer this question by generating winning tickets for one training configuration (optimizer and dataset) and evaluating their performance on another configuration. Perhaps surprisingly, we found that, within the natural images domain, winning ticket initializations generalized across a variety of datasets, including Fashion MNIST, SVHN, CIFAR-10/100, ImageNet, and Places365, often achieving performance close to that of winning tickets generated on the same dataset. Moreover, winning tickets generated using larger datasets consistently transferred better than those generated using smaller datasets. We also found that winning ticket initializations generalize across optimizers with high performance. These results suggest that winning ticket initializations contain inductive biases generic to neural networks more broadly which improve training across many settings and provide hope for the development of better initialization methods.


  Click for Model/Code and Paper
Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC

Nov 29, 2017
Wahid Bhimji, Steven Andrew Farrell, Thorsten Kurth, Michela Paganini, Prabhat, Evan Racah

There has been considerable recent activity applying deep convolutional neural nets (CNNs) to data from particle physics experiments. Current approaches on ATLAS/CMS have largely focussed on a subset of the calorimeter, and for identifying objects or particular particle types. We explore approaches that use the entire calorimeter, combined with track information, for directly conducting physics analyses: i.e. classifying events as known-physics background or new-physics signals. We use an existing RPV-Supersymmetry analysis as a case study and explore CNNs on multi-channel, high-resolution sparse images: applied on GPU and multi-node CPU architectures (including Knights Landing (KNL) Xeon Phi nodes) on the Cori supercomputer at NERSC.

* Presented at ACAT 2017 Conference, Submitted to J. Phys. Conf. Ser 

  Click for Model/Code and Paper
Machine Learning in High Energy Physics Community White Paper

Jul 08, 2018
Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Omar Zapata

Machine learning is an important research area in particle physics, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and reconstruction in the 2010s. In this document we discuss promising future research and development areas in machine learning in particle physics with a roadmap for their implementation, software and hardware resource requirements, collaborative initiatives with the data science community, academia and industry, and training the particle physics community in data science. The main objective of the document is to connect and motivate these areas of research and development with the physics drivers of the High-Luminosity Large Hadron Collider and future neutrino experiments and identify the resource needs for their implementation. Additionally we identify areas where collaboration with external communities will be of great benefit.

* Editors: Sergei Gleyzer, Paul Seyfert and Steven Schramm 

  Click for Model/Code and Paper