Research papers and code for "Milad Salem":
Generative adversarial networks have been able to generate striking results in various domains. This generation capability can be general while the networks gain deep understanding regarding the data distribution. In many domains, this data distribution consists of anomalies and normal data, with the anomalies commonly occurring relatively less, creating datasets that are imbalanced. The capabilities that generative adversarial networks offer can be leveraged to examine these anomalies and help alleviate the challenge that imbalanced datasets propose via creating synthetic anomalies. This anomaly generation can be specifically beneficial in domains that have costly data creation processes as well as inherently imbalanced datasets. One of the domains that fits this description is the host-based intrusion detection domain. In this work, ADFA-LD dataset is chosen as the dataset of interest containing system calls of small foot-print next generation attacks. The data is first converted into images, and then a Cycle-GAN is used to create images of anomalous data from images of normal data. The generated data is combined with the original dataset and is used to train a model to detect anomalies. By doing so, it is shown that the classification results are improved, with the AUC rising from 0.55 to 0.71, and the anomaly detection rate rising from 17.07% to 80.49%. The results are also compared to SMOTE, showing the potential presented by generative adversarial networks in anomaly generation.

* Accepted and presented at IEEE Annual Ubiquitous Computing, Electronics, and Mobile Communications Conference (IEEE UEMCON) on 8th-10th November 2018
Click to Read Paper and Get Code
Due to the recent advances in the area of deep learning, it has been demonstrated that a deep neural network, trained on a huge amount of data, can recognize cardiac arrhythmias better than cardiologists. Moreover, traditionally feature extraction was considered an integral part of ECG pattern recognition; however, recent findings have shown that deep neural networks can carry out the task of feature extraction directly from the data itself. In order to use deep neural networks for their accuracy and feature extraction, high volume of training data is required, which in the case of independent studies is not pragmatic. To arise to this challenge, in this work, the identification and classification of four ECG patterns are studied from a transfer learning perspective, transferring knowledge learned from the image classification domain to the ECG signal classification domain. It is demonstrated that feature maps learned in a deep neural network trained on great amounts of generic input images can be used as general descriptors for the ECG signal spectrograms and result in features that enable classification of arrhythmias. Overall, an accuracy of 97.23 percent is achieved in classifying near 7000 instances by ten-fold cross validation.

* Accepted and presented for IEEE Biomedical Circuits and Systems (BioCAS) on 17th-19th October 2018 in Ohio, USA
Click to Read Paper and Get Code