Models, code, and papers for "Ming-Hsuan Yang":

Learning Binary Residual Representations for Domain-specific Video Streaming

Dec 14, 2017
Yi-Hsuan Tsai, Ming-Yu Liu, Deqing Sun, Ming-Hsuan Yang, Jan Kautz

We study domain-specific video streaming. Specifically, we target a streaming setting where the videos to be streamed from a server to a client are all in the same domain and they have to be compressed to a small size for low-latency transmission. Several popular video streaming services, such as the video game streaming services of GeForce Now and Twitch, fall in this category. While conventional video compression standards such as H.264 are commonly used for this task, we hypothesize that one can leverage the property that the videos are all in the same domain to achieve better video quality. Based on this hypothesis, we propose a novel video compression pipeline. Specifically, we first apply H.264 to compress domain-specific videos. We then train a novel binary autoencoder to encode the leftover domain-specific residual information frame-by-frame into binary representations. These binary representations are then compressed and sent to the client together with the H.264 stream. In our experiments, we show that our pipeline yields consistent gains over standard H.264 compression across several benchmark datasets while using the same channel bandwidth.

* Accepted in AAAI'18. Project website at https://research.nvidia.com/publication/2018-02_Learning-Binary-Residual 

  Click for Model/Code and Paper
Res2Net: A New Multi-scale Backbone Architecture

Apr 02, 2019
Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, Philip Torr

Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models will be made publicly available.


  Click for Model/Code and Paper
SegFlow: Joint Learning for Video Object Segmentation and Optical Flow

Sep 20, 2017
Jingchun Cheng, Yi-Hsuan Tsai, Shengjin Wang, Ming-Hsuan Yang

This paper proposes an end-to-end trainable network, SegFlow, for simultaneously predicting pixel-wise object segmentation and optical flow in videos. The proposed SegFlow has two branches where useful information of object segmentation and optical flow is propagated bidirectionally in a unified framework. The segmentation branch is based on a fully convolutional network, which has been proved effective in image segmentation task, and the optical flow branch takes advantage of the FlowNet model. The unified framework is trained iteratively offline to learn a generic notion, and fine-tuned online for specific objects. Extensive experiments on both the video object segmentation and optical flow datasets demonstrate that introducing optical flow improves the performance of segmentation and vice versa, against the state-of-the-art algorithms.

* Accepted in ICCV'17. Code is available at https://sites.google.com/site/yihsuantsai/research/iccv17-segflow 

  Click for Model/Code and Paper
A Closed-form Solution to Photorealistic Image Stylization

Jul 27, 2018
Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, Jan Kautz

Photorealistic image stylization concerns transferring style of a reference photo to a content photo with the constraint that the stylized photo should remain photorealistic. While several photorealistic image stylization methods exist, they tend to generate spatially inconsistent stylizations with noticeable artifacts. In this paper, we propose a method to address these issues. The proposed method consists of a stylization step and a smoothing step. While the stylization step transfers the style of the reference photo to the content photo, the smoothing step ensures spatially consistent stylizations. Each of the steps has a closed-form solution and can be computed efficiently. We conduct extensive experimental validations. The results show that the proposed method generates photorealistic stylization outputs that are more preferred by human subjects as compared to those by the competing methods while running much faster. Source code and additional results are available at https://github.com/NVIDIA/FastPhotoStyle .

* Accepted by ECCV 2018 

  Click for Model/Code and Paper
Adversarial Learning of Privacy-Preserving and Task-Oriented Representations

Nov 22, 2019
Taihong Xiao, Yi-Hsuan Tsai, Kihyuk Sohn, Manmohan Chandraker, Ming-Hsuan Yang

Data privacy has emerged as an important issue as data-driven deep learning has been an essential component of modern machine learning systems. For instance, there could be a potential privacy risk of machine learning systems via the model inversion attack, whose goal is to reconstruct the input data from the latent representation of deep networks. Our work aims at learning a privacy-preserving and task-oriented representation to defend against such model inversion attacks. Specifically, we propose an adversarial reconstruction learning framework that prevents the latent representations decoded into original input data. By simulating the expected behavior of adversary, our framework is realized by minimizing the negative pixel reconstruction loss or the negative feature reconstruction (i.e., perceptual distance) loss. We validate the proposed method on face attribute prediction, showing that our method allows protecting visual privacy with a small decrease in utility performance. In addition, we show the utility-privacy trade-off with different choices of hyperparameter for negative perceptual distance loss at training, allowing service providers to determine the right level of privacy-protection with a certain utility performance. Moreover, we provide an extensive study with different selections of features, tasks, and the data to further analyze their influence on privacy protection.

* AAAI 2020 

  Click for Model/Code and Paper
Superpixel Sampling Networks

Jul 26, 2018
Varun Jampani, Deqing Sun, Ming-Yu Liu, Ming-Hsuan Yang, Jan Kautz

Superpixels provide an efficient low/mid-level representation of image data, which greatly reduces the number of image primitives for subsequent vision tasks. Existing superpixel algorithms are not differentiable, making them difficult to integrate into otherwise end-to-end trainable deep neural networks. We develop a new differentiable model for superpixel sampling that leverages deep networks for learning superpixel segmentation. The resulting "Superpixel Sampling Network" (SSN) is end-to-end trainable, which allows learning task-specific superpixels with flexible loss functions and has fast runtime. Extensive experimental analysis indicates that SSNs not only outperform existing superpixel algorithms on traditional segmentation benchmarks, but can also learn superpixels for other tasks. In addition, SSNs can be easily integrated into downstream deep networks resulting in performance improvements.

* ECCV2018. Project URL: https://varunjampani.github.io/ssn/ 

  Click for Model/Code and Paper
Learning Video-Story Composition via Recurrent Neural Network

Jan 31, 2018
Guangyu Zhong, Yi-Hsuan Tsai, Sifei Liu, Zhixun Su, Ming-Hsuan Yang

In this paper, we propose a learning-based method to compose a video-story from a group of video clips that describe an activity or experience. We learn the coherence between video clips from real videos via the Recurrent Neural Network (RNN) that jointly incorporates the spatial-temporal semantics and motion dynamics to generate smooth and relevant compositions. We further rearrange the results generated by the RNN to make the overall video-story compatible with the storyline structure via a submodular ranking optimization process. Experimental results on the video-story dataset show that the proposed algorithm outperforms the state-of-the-art approach.


  Click for Model/Code and Paper
Weakly-supervised Caricature Face Parsing through Domain Adaptation

May 13, 2019
Wenqing Chu, Wei-Chih Hung, Yi-Hsuan Tsai, Deng Cai, Ming-Hsuan Yang

A caricature is an artistic form of a person's picture in which certain striking characteristics are abstracted or exaggerated in order to create a humor or sarcasm effect. For numerous caricature related applications such as attribute recognition and caricature editing, face parsing is an essential pre-processing step that provides a complete facial structure understanding. However, current state-of-the-art face parsing methods require large amounts of labeled data on the pixel-level and such process for caricature is tedious and labor-intensive. For real photos, there are numerous labeled datasets for face parsing. Thus, we formulate caricature face parsing as a domain adaptation problem, where real photos play the role of the source domain, adapting to the target caricatures. Specifically, we first leverage a spatial transformer based network to enable shape domain shifts. A feed-forward style transfer network is then utilized to capture texture-level domain gaps. With these two steps, we synthesize face caricatures from real photos, and thus we can use parsing ground truths of the original photos to learn the parsing model. Experimental results on the synthetic and real caricatures demonstrate the effectiveness of the proposed domain adaptation algorithm. Code is available at: https://github.com/ZJULearning/CariFaceParsing .

* Accepted in ICIP 2019, code and model are available at https://github.com/ZJULearning/CariFaceParsing 

  Click for Model/Code and Paper
Context-Aware Synthesis and Placement of Object Instances

Dec 07, 2018
Donghoon Lee, Sifei Liu, Jinwei Gu, Ming-Yu Liu, Ming-Hsuan Yang, Jan Kautz

Learning to insert an object instance into an image in a semantically coherent manner is a challenging and interesting problem. Solving it requires (a) determining a location to place an object in the scene and (b) determining its appearance at the location. Such an object insertion model can potentially facilitate numerous image editing and scene parsing applications. In this paper, we propose an end-to-end trainable neural network for the task of inserting an object instance mask of a specified class into the semantic label map of an image. Our network consists of two generative modules where one determines where the inserted object mask should be (i.e., location and scale) and the other determines what the object mask shape (and pose) should look like. The two modules are connected together via a spatial transformation network and jointly trained. We devise a learning procedure that leverage both supervised and unsupervised data and show our model can insert an object at diverse locations with various appearances. We conduct extensive experimental validations with comparisons to strong baselines to verify the effectiveness of the proposed network.


  Click for Model/Code and Paper
Fast and Accurate Online Video Object Segmentation via Tracking Parts

Jun 06, 2018
Jingchun Cheng, Yi-Hsuan Tsai, Wei-Chih Hung, Shengjin Wang, Ming-Hsuan Yang

Online video object segmentation is a challenging task as it entails to process the image sequence timely and accurately. To segment a target object through the video, numerous CNN-based methods have been developed by heavily finetuning on the object mask in the first frame, which is time-consuming for online applications. In this paper, we propose a fast and accurate video object segmentation algorithm that can immediately start the segmentation process once receiving the images. We first utilize a part-based tracking method to deal with challenging factors such as large deformation, occlusion, and cluttered background. Based on the tracked bounding boxes of parts, we construct a region-of-interest segmentation network to generate part masks. Finally, a similarity-based scoring function is adopted to refine these object parts by comparing them to the visual information in the first frame. Our method performs favorably against state-of-the-art algorithms in accuracy on the DAVIS benchmark dataset, while achieving much faster runtime performance.

* Accepted in CVPR'18 as Spotlight. Code and model are available at https://github.com/JingchunCheng/FAVOS 

  Click for Model/Code and Paper
Referring Expression Object Segmentation with Caption-Aware Consistency

Oct 10, 2019
Yi-Wen Chen, Yi-Hsuan Tsai, Tiantian Wang, Yen-Yu Lin, Ming-Hsuan Yang

Referring expressions are natural language descriptions that identify a particular object within a scene and are widely used in our daily conversations. In this work, we focus on segmenting the object in an image specified by a referring expression. To this end, we propose an end-to-end trainable comprehension network that consists of the language and visual encoders to extract feature representations from both domains. We introduce the spatial-aware dynamic filters to transfer knowledge from text to image, and effectively capture the spatial information of the specified object. To better communicate between the language and visual modules, we employ a caption generation network that takes features shared across both domains as input, and improves both representations via a consistency that enforces the generated sentence to be similar to the given referring expression. We evaluate the proposed framework on two referring expression datasets and show that our method performs favorably against the state-of-the-art algorithms.

* Accepted in BMVC'19, project page at https://github.com/wenz116/lang2seg 

  Click for Model/Code and Paper
Unseen Object Segmentation in Videos via Transferable Representations

Jan 08, 2019
Yi-Wen Chen, Yi-Hsuan Tsai, Chu-Ya Yang, Yen-Yu Lin, Ming-Hsuan Yang

In order to learn object segmentation models in videos, conventional methods require a large amount of pixel-wise ground truth annotations. However, collecting such supervised data is time-consuming and labor-intensive. In this paper, we exploit existing annotations in source images and transfer such visual information to segment videos with unseen object categories. Without using any annotations in the target video, we propose a method to jointly mine useful segments and learn feature representations that better adapt to the target frames. The entire process is decomposed into two tasks: 1) solving a submodular function for selecting object-like segments, and 2) learning a CNN model with a transferable module for adapting seen categories in the source domain to the unseen target video. We present an iterative update scheme between two tasks to self-learn the final solution for object segmentation. Experimental results on numerous benchmark datasets show that the proposed method performs favorably against the state-of-the-art algorithms.

* Accepted in ACCV'18 (oral). Code is available at https://github.com/wenz116/TransferSeg 

  Click for Model/Code and Paper
Deep Image Harmonization

Feb 28, 2017
Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Xin Lu, Ming-Hsuan Yang

Compositing is one of the most common operations in photo editing. To generate realistic composites, the appearances of foreground and background need to be adjusted to make them compatible. Previous approaches to harmonize composites have focused on learning statistical relationships between hand-crafted appearance features of the foreground and background, which is unreliable especially when the contents in the two layers are vastly different. In this work, we propose an end-to-end deep convolutional neural network for image harmonization, which can capture both the context and semantic information of the composite images during harmonization. We also introduce an efficient way to collect large-scale and high-quality training data that can facilitate the training process. Experiments on the synthesized dataset and real composite images show that the proposed network outperforms previous state-of-the-art methods.


  Click for Model/Code and Paper
Adversarial Learning for Semi-Supervised Semantic Segmentation

Jul 24, 2018
Wei-Chih Hung, Yi-Hsuan Tsai, Yan-Ting Liou, Yen-Yu Lin, Ming-Hsuan Yang

We propose a method for semi-supervised semantic segmentation using an adversarial network. While most existing discriminators are trained to classify input images as real or fake on the image level, we design a discriminator in a fully convolutional manner to differentiate the predicted probability maps from the ground truth segmentation distribution with the consideration of the spatial resolution. We show that the proposed discriminator can be used to improve semantic segmentation accuracy by coupling the adversarial loss with the standard cross entropy loss of the proposed model. In addition, the fully convolutional discriminator enables semi-supervised learning through discovering the trustworthy regions in predicted results of unlabeled images, thereby providing additional supervisory signals. In contrast to existing methods that utilize weakly-labeled images, our method leverages unlabeled images to enhance the segmentation model. Experimental results on the PASCAL VOC 2012 and Cityscapes datasets demonstrate the effectiveness of the proposed algorithm.

* Accepted in BMVC 2018. Code and models available at https://github.com/hfslyc/AdvSemiSeg 

  Click for Model/Code and Paper
Learning to Adapt Structured Output Space for Semantic Segmentation

Feb 28, 2018
Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang, Manmohan Chandraker

Convolutional neural network-based approaches for semantic segmentation rely on supervision with pixel-level ground truth, but may not generalize well to unseen image domains. As the labeling process is tedious and labor intensive, developing algorithms that can adapt source ground truth labels to the target domain is of great interest. In this paper, we propose an adversarial learning method for domain adaptation in the context of semantic segmentation. Considering semantic segmentations as structured outputs that contain spatial similarities between the source and target domains, we adopt adversarial learning in the output space. To further enhance the adapted model, we construct a multi-level adversarial network to effectively perform output space domain adaptation at different feature levels. Extensive experiments and ablation study are conducted under various domain adaptation settings, including synthetic-to-real and cross-city scenarios. We show that the proposed method performs favorably against the state-of-the-art methods in terms of accuracy and visual quality.

* Accepted in CVPR'18. Code and model are available at https://github.com/wasidennis/AdaptSegNet 

  Click for Model/Code and Paper
Scene Parsing with Global Context Embedding

Oct 20, 2017
Wei-Chih Hung, Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Xin Lu, Ming-Hsuan Yang

We present a scene parsing method that utilizes global context information based on both the parametric and non- parametric models. Compared to previous methods that only exploit the local relationship between objects, we train a context network based on scene similarities to generate feature representations for global contexts. In addition, these learned features are utilized to generate global and spatial priors for explicit classes inference. We then design modules to embed the feature representations and the priors into the segmentation network as additional global context cues. We show that the proposed method can eliminate false positives that are not compatible with the global context representations. Experiments on both the MIT ADE20K and PASCAL Context datasets show that the proposed method performs favorably against existing methods.

* Accepted in ICCV'17. Code available at https://github.com/hfslyc/GCPNet 

  Click for Model/Code and Paper
Dancing to Music

Nov 05, 2019
Hsin-Ying Lee, Xiaodong Yang, Ming-Yu Liu, Ting-Chun Wang, Yu-Ding Lu, Ming-Hsuan Yang, Jan Kautz

Dancing to music is an instinctive move by humans. Learning to model the music-to-dance generation process is, however, a challenging problem. It requires significant efforts to measure the correlation between music and dance as one needs to simultaneously consider multiple aspects, such as style and beat of both music and dance. Additionally, dance is inherently multimodal and various following movements of a pose at any moment are equally likely. In this paper, we propose a synthesis-by-analysis learning framework to generate dance from music. In the analysis phase, we decompose a dance into a series of basic dance units, through which the model learns how to move. In the synthesis phase, the model learns how to compose a dance by organizing multiple basic dancing movements seamlessly according to the input music. Experimental qualitative and quantitative results demonstrate that the proposed method can synthesize realistic, diverse,style-consistent, and beat-matching dances from music.

* NeurIPS 2019; Project page: https://github.com/NVlabs/Dancing2Music 

  Click for Model/Code and Paper
Progressive Domain Adaptation for Object Detection

Oct 24, 2019
Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih Hung, Hung-Yu Tseng, Maneesh Singh, Ming-Hsuan Yang

Recent deep learning methods for object detection rely on a large amount of bounding box annotations. Collecting these annotations is laborious and costly, yet supervised models do not generalize well when testing on images from a different distribution. Domain adaptation provides a solution by adapting existing labels to the target testing data. However, a large gap between domains could make adaptation a challenging task, which leads to unstable training processes and sub-optimal results. In this paper, we propose to bridge the domain gap with an intermediate domain and progressively solve easier adaptation subtasks. This intermediate domain is constructed by translating the source images to mimic the ones in the target domain. To tackle the domain-shift problem, we adopt adversarial learning to align distributions at the feature level. In addition, a weighted task loss is applied to deal with unbalanced image quality in the intermediate domain. Experimental results show that our method performs favorably against the state-of-the-art method in terms of the performance on the target domain.

* Accepted in WACV'20. Code and models will be available at https://github.com/kevinhkhsu/DA_detection 

  Click for Model/Code and Paper
UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking

Sep 04, 2016
Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-Ching Chang, Honggang Qi, Jongwoo Lim, Ming-Hsuan Yang, Siwei Lyu

In recent years, numerous effective multi-object tracking (MOT) methods are developed because of the wide range of applications. Existing performance evaluations of MOT methods usually separate the object tracking step from the object detection step by using the same fixed object detection results for comparisons. In this work, we perform a comprehensive quantitative study on the effects of object detection accuracy to the overall MOT performance, using the new large-scale University at Albany DETection and tRACking (UA-DETRAC) benchmark dataset. The UA-DETRAC benchmark dataset consists of 100 challenging video sequences captured from real-world traffic scenes (over 140,000 frames with rich annotations, including occlusion, weather, vehicle category, truncation, and vehicle bounding boxes) for object detection, object tracking and MOT system. We evaluate complete MOT systems constructed from combinations of state-of-the-art object detection and object tracking methods. Our analysis shows the complex effects of object detection accuracy on MOT system performance. Based on these observations, we propose new evaluation tools and metrics for MOT systems that consider both object detection and object tracking for comprehensive analysis.

* 18 pages, 11 figures 

  Click for Model/Code and Paper
Learning to Segment Instances in Videos with Spatial Propagation Network

Sep 14, 2017
Jingchun Cheng, Sifei Liu, Yi-Hsuan Tsai, Wei-Chih Hung, Shalini De Mello, Jinwei Gu, Jan Kautz, Shengjin Wang, Ming-Hsuan Yang

We propose a deep learning-based framework for instance-level object segmentation. Our method mainly consists of three steps. First, We train a generic model based on ResNet-101 for foreground/background segmentations. Second, based on this generic model, we fine-tune it to learn instance-level models and segment individual objects by using augmented object annotations in first frames of test videos. To distinguish different instances in the same video, we compute a pixel-level score map for each object from these instance-level models. Each score map indicates the objectness likelihood and is only computed within the foreground mask obtained in the first step. To further refine this per frame score map, we learn a spatial propagation network. This network aims to learn how to propagate a coarse segmentation mask spatially based on the pairwise similarities in each frame. In addition, we apply a filter on the refined score map that aims to recognize the best connected region using spatial and temporal consistencies in the video. Finally, we decide the instance-level object segmentation in each video by comparing score maps of different instances.

* CVPR 2017 Workshop on DAVIS Challenge. Code is available at http://github.com/JingchunCheng/Seg-with-SPN 

  Click for Model/Code and Paper