Models, code, and papers for "Mingzhi Dong":

Meta-Learning Transferable Active Learning Policies by Deep Reinforcement Learning

Jun 12, 2018
Kunkun Pang, Mingzhi Dong, Yang Wu, Timothy Hospedales

Active learning (AL) aims to enable training high performance classifiers with low annotation cost by predicting which subset of unlabelled instances would be most beneficial to label. The importance of AL has motivated extensive research, proposing a wide variety of manually designed AL algorithms with diverse theoretical and intuitive motivations. In contrast to this body of research, we propose to treat active learning algorithm design as a meta-learning problem and learn the best criterion from data. We model an active learning algorithm as a deep neural network that inputs the base learner state and the unlabelled point set and predicts the best point to annotate next. Training this active query policy network with reinforcement learning, produces the best non-myopic policy for a given dataset. The key challenge in achieving a general solution to AL then becomes that of learner generalisation, particularly across heterogeneous datasets. We propose a multi-task dataset-embedding approach that allows dataset-agnostic active learners to be trained. Our evaluation shows that AL algorithms trained in this way can directly generalise across diverse problems.

  Click for Model/Code and Paper
Metric Learning via Maximizing the Lipschitz Margin Ratio

Feb 09, 2018
Mingzhi Dong, Xiaochen Yang, Yang Wu, Jing-Hao Xue

In this paper, we propose the Lipschitz margin ratio and a new metric learning framework for classification through maximizing the ratio. This framework enables the integration of both the inter-class margin and the intra-class dispersion, as well as the enhancement of the generalization ability of a classifier. To introduce the Lipschitz margin ratio and its associated learning bound, we elaborate the relationship between metric learning and Lipschitz functions, as well as the representability and learnability of the Lipschitz functions. After proposing the new metric learning framework based on the introduced Lipschitz margin ratio, we also prove that some well known metric learning algorithms can be shown as special cases of the proposed framework. In addition, we illustrate the framework by implementing it for learning the squared Mahalanobis metric, and by demonstrating its encouraging results on eight popular datasets of machine learning.

  Click for Model/Code and Paper
Dynamic Ensemble Active Learning: A Non-Stationary Bandit with Expert Advice

Sep 29, 2018
Kunkun Pang, Mingzhi Dong, Yang Wu, Timothy M. Hospedales

Active learning aims to reduce annotation cost by predicting which samples are useful for a human teacher to label. However it has become clear there is no best active learning algorithm. Inspired by various philosophies about what constitutes a good criteria, different algorithms perform well on different datasets. This has motivated research into ensembles of active learners that learn what constitutes a good criteria in a given scenario, typically via multi-armed bandit algorithms. Though algorithm ensembles can lead to better results, they overlook the fact that not only does algorithm efficacy vary across datasets, but also during a single active learning session. That is, the best criteria is non-stationary. This breaks existing algorithms' guarantees and hampers their performance in practice. In this paper, we propose dynamic ensemble active learning as a more general and promising research direction. We develop a dynamic ensemble active learner based on a non-stationary multi-armed bandit with expert advice algorithm. Our dynamic ensemble selects the right criteria at each step of active learning. It has theoretical guarantees, and shows encouraging results on $13$ popular datasets.

* This work has been accepted at ICPR2018 and won Piero Zamperoni Best Student Paper Award 

  Click for Model/Code and Paper
Learning Local Metrics and Influential Regions for Classification

Feb 09, 2018
Mingzhi Dong, Yujiang Wang, Xiaochen Yang, Jing-Hao Xue

The performance of distance-based classifiers heavily depends on the underlying distance metric, so it is valuable to learn a suitable metric from the data. To address the problem of multimodality, it is desirable to learn local metrics. In this short paper, we define a new intuitive distance with local metrics and influential regions, and subsequently propose a novel local metric learning method for distance-based classification. Our key intuition is to partition the metric space into influential regions and a background region, and then regulate the effectiveness of each local metric to be within the related influential regions. We learn local metrics and influential regions to reduce the empirical hinge loss, and regularize the parameters on the basis of a resultant learning bound. Encouraging experimental results are obtained from various public and popular data sets.

  Click for Model/Code and Paper
Dynamic Face Video Segmentation via Reinforcement Learning

Jul 02, 2019
Yujiang Wang, Jie Shen, Mingzhi Dong, Yang Wu, Shiyang Cheng, Maja Pantic

For real-time semantic video segmentation, most recent works utilise a dynamic framework with a key scheduler to make online key/non-key decisions. Some works used a fixed key scheduling policy, while others proposed adaptive key scheduling methods based on heuristic strategies, both of which may lead to suboptimal global performance. To overcome this limitation, we propose to model the online key decision process in dynamic video segmentation as a deep reinforcement learning problem, and to learn an efficient and effective scheduling policy from expert information about decision history and from the process of maximising global return. Moreover, we study the application of dynamic video segmentation on face videos, a field that has not been investigated before. By evaluating on the 300VW dataset, we show that the performance of our reinforcement key scheduler outperforms that of various baseline approaches, and our method could also achieve real-time processing speed. To the best of our knowledge, this is the first work to use reinforcement learning for online key-frame decision in dynamic video segmentation, and also the first work on its application on face videos.

  Click for Model/Code and Paper